refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 104 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE47092
Effects of bacterium Burkholderia phytofirmans PsJN in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Plant growth promoting rhizobacteria (PGPR) induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short- term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization.

Publication Title

Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana.

Alternate Accession IDs

E-GEOD-47092

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon SRP089680
Assessing the impact of loss of ATF7IP and SETDB1 on the transcriptome
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

By comparing HeLa cells lacking ATF7IP or SETDB1 generated through CRISPR/Cas9-mediated gene disruption to wild-type HeLa cells, the goal of the experiment was to determine the effect of loss of the SETDB1•ATF7IP complex on the transcriptome. Overall design: Total RNA-seq of three independent knockout HeLa clones lacking either ATF7IP or SETDB1

Publication Title

ATF7IP-Mediated Stabilization of the Histone Methyltransferase SETDB1 Is Essential for Heterochromatin Formation by the HUSH Complex.

Alternate Accession IDs

GSE86813

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP029451
Zea mays Transcriptome or Gene expression
  • organism-icon Zea mays
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Illumina Genome Analyzer IIx

Description

Maize LEAFBLADELESS1 (LBL1) and Arabidopsis SUPPRESSOR OF GENE SILENCING3 (SGS3) play orthologous roles in the biogenesis of 21 nucleotide trans-acting short-interfering RNAs (tasiRNAs). The phenotypes conditioned by mutation of lbl1 and SGS3 are, however, strikingly different, suggesting that the activities of these small RNA biogenesis components, or the tasiRNAs and their targets might not be entirely conserved. To investigate the basis for this phenotypic variation, we compared the small RNA content between wild-type and lbl1 seedling apices. We show that LBL1 affects all major classes of small RNAs, and reveal unexpected crosstalk between tasiRNA biogenesis and other small RNA pathways regulating miRNAs, retrotransposons, and DNA transposons. We further identified genomic regions generating phased siRNAs, including numerous loci generating 22-nt phased small RNAs from long hairpin RNAs or overlapping antisense transcripts not previously described in other plant species. By combining both analyses, we identified nine TAS loci, all belonging to the conserved TAS3 family. Contrary to other plant species, no TAS loci targeted by a single miRNA were identified. Information from target prediction, RNAseq, and PARE analyses identified the tasiARFs as the major functional tasiRNAs in the maize vegetative apex where they regulate expression of ARF3 homologs. As such, divergence in TAS pathways is unlikely to account for the distinct phenotypes of tasiRNA biogenesis mutants in Arabidopsis and maize. Instead, the data suggests variation in the spatiotemporal regulation of ARF3, or divergence in its function, as a plausible basis for the dramatic phenotypic differences observed upon mutation of SGS3/lbl1 in Arabidopsis and maize. Overall design: An analysis of tasiRNA biogenesis, activity, and contribution to developmental phenotypes in the maize leaf. Data generated includes small RNA sequencing data and mRNA sequencing data. All data was generated in both wild type and lbl1 mutant maize leaf apices. Three replicates were generated for each genotype for the small RNA data. Two of these replicates were also used for the RNA-seq data.

Publication Title

Genome-wide analysis of leafbladeless1-regulated and phased small RNAs underscores the importance of the TAS3 ta-siRNA pathway to maize development.

Alternate Accession IDs

GSE50557

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE23293
Definition and characterization of the systemic T cell dysregulation in untreated indolent B cell lymphoma and very early CLL
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Epidemiological data show that the immune system may control or promote emergence and growth of a neoplastic lymphomatous clone. Conversely, systemic lymphomas, especially myeloma and CLL, are associated with clinical immunodeficiency. This prospective controlled study demonstrates substantially reduced circulating T helper cells, predominantly naive CD4+ cells, in patients with non-leukemic follicular and extranodal marginal zone lymphomas, but not in monoclonal gammopathy and early CLL. These numerical changes were correlated with a preactivated phenotype, hyperreactivity in vitro, presenescence, and a Th2 shift of peripheral T helper cells. No prominent alterations were found in the regulatory T cell compartment. Gene expression profiling of in vitro-stimulated CD4+ cells revealed an independent second alteration of T helper cell physiology which was most pronounced in early CLL but also detectable in FL/eMZL. This pattern consisted of downregulation of proximal and intermediate T-cell receptor signaling cascades and globally reduced cytokine secretion. Both types of T cell dysfunction may contribute to significant immunodeficiency in non-leukemic indolent B-cell lymphomas as demonstrated by refractoriness to hepatitis B vaccination. The precise definition of systemic T cell dysfunction serves as the basis to study its prognostic impact, its relationship to the established influence of the lymphoma microenvironment, and its therapeutic manipulation

Publication Title

Definition and characterization of the systemic T-cell dysregulation in untreated indolent B-cell lymphoma and very early CLL.

Alternate Accession IDs

E-GEOD-23293

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE13705
The effects of dietary curcumin on colonic gene expression in TNBS-induced colitis
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Curcumin is a potent anti-inflammatory compound capable of preventing chemically induced colitis in mice.

Publication Title

Protective effects of dietary curcumin in mouse model of chemically induced colitis are strain dependent.

Alternate Accession IDs

E-GEOD-13705

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE9201
Identification of genes responding to the activity of the Arabidopsis cytochrome P450 KLUH/CYP78A5
  • organism-icon Arabidopsis thaliana
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The Arabidopsis cytochrome P450 KLUH (KLU)/CYP78A5 promotes organ growth in a non-cell autonomous manner. To identify genes regulated by KLU activity, homozygous klu-2 mutants carrying constructs for EtOH-inducible overexpression of wild-type KLU (35S::AlcR-AlcA::KLU) or of enzymatically inactive KLU protein (35S::AlcR-AlcA::KLUmut) were induced with EtOH and sampled at 90 min and 240 min after induction for gene expression changes.

Publication Title

Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling.

Alternate Accession IDs

E-GEOD-9201

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE98244
The specific role of RhoC in tumor invasion and metastasis
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The molecules RhoC and RhoA are essential factors for invasion/metastasis of tumor cells proliferation, respectively. RhoC over-expression was especially linked to aggressive cancers, which requires loss of epithelial polarity and deregulation of cellular adhesion. This epithelial-mesenchymal transition (EMT) includes a change in gene expression pattern through several transcription factors, like Snail, ZEB1 or Twist. Here we analyze the potential of RhoC to induce EMT, migration and invasion and to regulate specific genes involved in tumorigenesis. We established stable MCF-10A cell lines with RhoA/RhoC expression under the control of a doxycycline-regulated trans-activator and a transcriptional silencer allowing conditional expression of RhoA and RhoC, respectively. We additionally quantified the transcriptional response from two bacterial toxins: Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1) and Yersinia pseudotuberculosis Cytotoxic Necrotizing Factor (CNFY) to directly activate the endogenous pool of Rho GTPases and characterized changes in morphology, migration and invasion upon induction of RhoA/RhoC expression or activation by the toxins in MCF-10A grown in two- and three-dimensions. The transcriptome response identified PTGS2 as RhoC specific target genes involved in pro-migratory changes which was experimentally validated.

Publication Title

Specific role of RhoC in tumor invasion and metastasis.

Alternate Accession IDs

E-GEOD-98244

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE15856
Electric stimulation of neonatal rat ventricular cardiomyocytes
  • organism-icon Rattus norvegicus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Study on changes in gene expression in primary cultures of neonatal rat ventricular cardiomyocytes to electric stimulation.

Publication Title

Electrical signals affect the cardiomyocyte transcriptome independently of contraction.

Alternate Accession IDs

E-GEOD-15856

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE1847
Boswellia Serrata
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Hepatic gene expression analysis in mice fed control diet or diets supplemented with 1% Fraction 1 (haxane) or Fraction 2 (methanol) of Boswellia Serrata

Publication Title

Effects of Boswellia serrata in mouse models of chemically induced colitis.

Alternate Accession IDs

E-GEOD-1847

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP100835
Assessing the impact of the R252W Charcot-Marie-Tooth disease mutation in MORC2 on HUSH-mediated repression
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

HeLa cells lacking MORC2 generated through CRISPR/Cas9-mediated gene disruption were reconstituted with either wild-type or R252W mutant MORC2, and re-repression of HUSH target genes assessed by RNA-seq Overall design: Total RNA-seq of MORC2 knockout cells, either 1) mock transduced, 2) transduced with lentiviral vector encoding wild-type MORC2 or 3) transduced with lentviral vector encoding R252W MORC2.

Publication Title

Hyperactivation of HUSH complex function by Charcot-Marie-Tooth disease mutation in MORC2.

Alternate Accession IDs

GSE95455

Sample Metadata Fields

Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0