refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3078 results
Sort by

Filters

Organism

Technology

Platform

accession-icon SRP014579
Braveheart is a long non-coding RNA necessary for cardiac lineage commitment
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Illumina Genome Analyzer IIx, Illumina Genome Analyzer II

Description

Purpose: Long non-coding RNAs (lncRNAs) display development-specific gene expression patterns, yet we know little about their precise roles in lineage commitment. Here, we discover a novel mammalian heart-associated lncRNA, AK143260, necessary for cardiac lineage specification. Methods: Gene expression profiles of mouse ESCs and differentiated organs were analyzed for master regulators of lineage commitment. The AK143260 transcript was shown to be strongly expressed in mESCs and in cells undergoing cardiac differentiation. Its role in cardiac differentiation was examined using depletion and in vitro differentiation systems, with morphological and gene expression profiling at different time-points. Results: mESCs depleted of AK143260, named Braveheart, fail to differentiate into cardiomyocytes and to activate a core cardiac gene regulatory network including key transcription factors driving cardiogenesis. We show that Braveheart functions upstream of MesP1 (mesoderm posterior 1), a transcription factor critical for specification of the earliest known multi-potent cardiovascular progenitor and in promoting epithelial-mesenchymal transition (EMT). Consistent with this, Braveheart depletion leads to morphological defects and loss of cardiogenic potential in a defined in vitro cardiomyocyte differentiation system. Furthermore, Braveheart is necessary to maintain myocardial gene expression and myofibril organization in neonatal cardiomyocytes. Conclusions: These findings reveal that Braveheart is an important regulator of cardiac commitment and implicate lncRNAs as potential therapeutic targets for cardiac disease and regeneration. Overall design: Gene expression profiles from control and Bravheart-depleted mESCs were obtained by RNA-Seq on an Illumina HiSeq2000 instruments at Days 0,3,6 and 9. Gene expression profiles from mESCs, MEFs, partially reprogrammed MEFs and miPS cells were obtained by RNA-Seq on Illumina GAII/GAIIx instruments.

Publication Title

Braveheart, a long noncoding RNA required for cardiovascular lineage commitment.

Alternate Accession IDs

GSE39656

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject, Time

View Samples
accession-icon GSE28089
IPH-926 human lobular breast cancer cells
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

IPH-926 is an anticancer drug-resistant tumor cell line derived from a chemo-refractory human infiltrating lobular breast cancer (ILBC). IPH-926 ILBC cells were subjected to gene expression profiling using an Affymetrix HG U133 Plus 2.0 array.

Publication Title

ABCB1/MDR1 contributes to the anticancer drug-resistant phenotype of IPH-926 human lobular breast cancer cells.

Alternate Accession IDs

E-GEOD-28089

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP172768
Single-nucleus and single-cell transcriptomes compared in matched cortical cell types
  • organism-icon Mus musculus
  • sample-icon 950 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Transcriptomic profiling of complex tissues by single-nucleus RNA-sequencing (snRNA-seq) affords some advantages over single-cell RNA-sequencing (scRNA-seq). snRNA-seq provides less biased cellular coverage, does not appear to suffer cell isolation-based transcriptional artifacts, and can be applied to archived frozen specimens. We used well-matched snRNA-seq and scRNA-seq datasets from mouse visual cortex to compare cell type detection. Although more transcripts are detected in individual whole cells (~11,000 genes) than nuclei (~7,000 genes), we demonstrate that closely related neuronal cell types can be similarly discriminated with both methods if intronic sequences are included in snRNA-seq analysis. We estimate that the nuclear proportion of total cellular mRNA varies from 20% to over 50% for large and small pyramidal neurons, respectively. Together, these results illustrate the high information content of nuclear RNA for characterization of cellular diversity in brain tissues. Overall design: scRNA-seq of 463 single nuclei and 463 matched single cells from mouse primary visual cortex (VISp) and 30 control samples. Note that single cell data respresents a small subset of VISp cells from GEO series GSE115746.

Publication Title

Single-nucleus and single-cell transcriptomes compared in matched cortical cell types.

Alternate Accession IDs

GSE123454

Sample Metadata Fields

Subject

View Samples
accession-icon SRP014006
RNA sequencing in fly heads to examine the effect of spermidine feeding on transcription in the ageing fly brain.
  • organism-icon Drosophila melanogaster
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx, Illumina HiSeq 2000

Description

mRNA sequencing was used to identify genome wide transcriptional changes occuring in fly heads in response to spermidine feeding. This study shed light on the molecular mechanisms through wich spermidine can protect against age-dependent memory impairment. Overall design: mRNA profiles from 3 and 10 day old Drosophila melanogaster heads were generated in duplicate by deep sequencing using Illumina GAIIx. mRNA profiles from flies that were fed food with 5mM spermidine were compared to profiles from flies that had no spermidine in thier food.

Publication Title

Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner.

Alternate Accession IDs

GSE38998

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE7342
Expression data from p38 knock out versus wild type fetal liver
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The mitogen-activated protein kinase (MAPK) p38alpha controls inflammatory responses and cell proliferation. Using mice carrying conditional p38alpha alleles, we investigated its function in postnatal development and tumorigenesis. When p38alpha is specifically deleted in the mouse embryo, fetuses develop to term but die shortly after birth, likely due to lung dysfunction. Fetal hematopoietic cells and embryonic fibroblasts deficient in p38alpha display increased proliferation, resulting from sustained activation of the c-Jun N-terminal kinase (JNK)/c-Jun pathway. Importantly, in chemical-induced liver cancer development, mice with liver-specific deletion of p38alpha show enhanced hepatocyte proliferation and tumor development that also correlates with JNK/c-Jun upregulation. Furthermore, increased proliferation of p38alpha-deficient hepatocytes and tumor cells is suppressed by inactivation of JNK or c-Jun. These results reveal a novel mechanism whereby p38alpha negatively regulates cell proliferation through antagonizing the JNK/c-Jun pathway in multiple cell types and in liver cancer development.

Publication Title

p38alpha suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway.

Alternate Accession IDs

E-GEOD-7342

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE45941
Transcription factor TFAP2C regulates major programs required for murine fetal germ cell maintenance and haploinsufficiency predisposes to teratomas in male mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Maintenance and maturation of primordial germ cells is controlled by complex genetic and epigenetic cascades, and disturbances in this network lead to either infertility or malignant aberration. Transcription factor Tcfap2c / TFAP2C has been described to be essential for primordial germ cell maintenance and to be upregulated in several human germ cell cancers. Using global gene expression profiling, we identified genes deregulated upon loss of Tcfap2c in primordial germ cell-like cells. We show that loss of Tcfap2c affects many aspects of the genetic network regulating germ cell biology, such as downregulation maturation markers and induction of markers indicative of somatic differentiation, cell cycle, epigenetic remodeling, and pluripotency associated genes. Chromatin-immunoprecipitation analyses demonstrated binding of Tcfap2c to regulatory regions of deregulated genes (Sfrp1, Dmrt1, Nanos3, c-Kit, Cdk6, Cdkn1a, Fgf4, Klf4, Dnmt3b and Dnmt3l) suggesting that these genes are direct transcriptional targets of Tcfap2c in primordial germ cells. Since Tcfap2c deficient primordial germ cell like cells display cancer related deregulations in epigenetic remodeling, cell cycle and pluripotency control, the Tcfap2c-knockout allele was bred onto 129S2/Sv genetic background. There, mice heterozygous for Tcfap2c develop germ cell cancer with high incidence. Precursor lesions can be observed as early as E16.5 in developing testes displaying persisting expression of pluripotency markers. We further demonstrate, that mice with a heterozygous deletion of the Tcfap2c target gene Nanos3 are also prone to develop teratoma. These data highlight Tcfap2c as a critical and dose-sensitive regulator of germ cell fate.

Publication Title

Transcription factor TFAP2C regulates major programs required for murine fetal germ cell maintenance and haploinsufficiency predisposes to teratomas in male mice.

Alternate Accession IDs

E-GEOD-45941

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE47778
DAF-16/FoxO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage
  • organism-icon Caenorhabditis elegans
  • sample-icon 51 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.

Alternate Accession IDs

E-GEOD-47778

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE51162
DAF-16/FoxO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage [N2, daf-2, daf-16, daf-2;daf-16]
  • organism-icon Caenorhabditis elegans
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Genome maintenance defects cause complex disease phenotypes characterized by developmental failure, cancer susceptibility and premature aging. It remains poorly understood how DNA damage responses function during organismal development and maintain tissue functionality when DNA damage accumulates with aging. Here we show that the FoxO transcription factor DAF-16 is activated in response to DNA damage during development while the DNA damage responsiveness of DAF-16 declines with aging. We find that in contrast to its established role in mediating starvation arrest, DAF-16 alleviates DNA damage induced developmental arrest and even in the absence of DNA repair promotes developmental growth and enhances somatic tissue functionality. We demonstrate that the GATA transcription factor EGL-27 co-regulates DAF-16 target genes in response to DNA damage and together with DAF-16 promotes developmental growth. We propose that EGL-27/GATA activity specifies DAF-16 mediated DNA damage responses to enable developmental progression and to prolong tissue functioning when DNA damage persists.

Publication Title

DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.

Alternate Accession IDs

E-GEOD-51162

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE51161
DAF-16/FoxO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage [N2, xpa-1]
  • organism-icon Caenorhabditis elegans
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Genome maintenance defects cause complex disease phenotypes characterized by developmental failure, cancer susceptibility and premature aging. It remains poorly understood how DNA damage responses function during organismal development and maintain tissue functionality when DNA damage accumulates with aging. Here we show that the FoxO transcription factor DAF-16 is activated in response to DNA damage during development while the DNA damage responsiveness of DAF-16 declines with aging. We find that in contrast to its established role in mediating starvation arrest, DAF-16 alleviates DNA damage induced developmental arrest and even in the absence of DNA repair promotes developmental growth and enhances somatic tissue functionality. We demonstrate that the GATA transcription factor EGL-27 co-regulates DAF-16 target genes in response to DNA damage and together with DAF-16 promotes developmental growth. We propose that EGL-27/GATA activity specifies DAF-16 mediated DNA damage responses to enable developmental progression and to prolong tissue functioning when DNA damage persists.

Publication Title

DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.

Alternate Accession IDs

E-GEOD-51161

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE74297
MALT1 protease activity controls the expression of inflammatory genes in keratinocytes upon Zymosan stimulation
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

The protease activity of the paracaspase MALT1 plays an important role in antigen receptor-mediated lymphocyte activation by controlling the activity of the transcription factor NF-kB and is thus essential for the expression of inflammatory target genes.

Publication Title

MALT1 Protease Activity Controls the Expression of Inflammatory Genes in Keratinocytes upon Zymosan Stimulation.

Alternate Accession IDs

E-GEOD-74297

Sample Metadata Fields

Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0