refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 74 results
Sort by

Filters

Organism

Technology

Platform

accession-icon SRP155372
Inhibition of casein kinase 2 disrupts differentiation of myeloid cells in cancer and enhances the efficacy of immunotherapy in mice
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The role of myeloid cells as regulators of tumor progression that significantly impact the efficacy of cancer immunotherapies makes them an attractive target for inhibition. Here we explore the effect of a novel, potent, and selective inhibitor of serine/threonine protein kinase CK2 on modulating myeloid cells in the tumor microenvironment. Although inhibition of CK2 caused only a modest effect on dendritic cells in tumor-bearing mice, it substantially reduced the amount of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) and tumor-associated macrophages (TAM). This effect was not caused by the induction of apoptosis, but rather by a block of differentiation. Our results implicated downregulation of CCAAT-enhancer binding protein-a (C/EBPa) in this effect. Although CK2 inhibition did not directly affect tumor cells, it dramatically enhanced the antitumor activity of immune checkpoint receptor blockade using anti-CTLA-4 antibody. These results suggest a potential role of CK2 inhibitors in combination therapies against cancer. Overall design: Untreated and CK2 inhibitor treated hematopoietic progenitor cells cells assayed by RNA-seq

Publication Title

Inhibition of Casein Kinase 2 Disrupts Differentiation of Myeloid Cells in Cancer and Enhances the Efficacy of Immunotherapy in Mice.

Alternate Accession IDs

GSE117712

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE73474
Expression data from toll-like receptor 9 (TLR9) knockout macrophages stimulated with -1,3 glucan beads
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Dectin1 controls the recruitment of TLR9 to -1,3 glucan beads containing phagosomes. We sought to determine whether Dectin-1 also plays a role in controlling TLR9 dependent gene expression.

Publication Title

Dectin-1 Controls TLR9 Trafficking to Phagosomes Containing β-1,3 Glucan.

Alternate Accession IDs

E-GEOD-73474

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE48204
Gene expression in epithelial, EMT (epithelial-mesenchymal transition) and MET (mesenchymal-epithelial transition) cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

NMuMG is an epithelial cell line that can be induced into EMT by TGF- treatment or MET by TGF- withdrawl. During EMT, several marker genes were downregulated/upregulated, which is consistent with its mesenchymal phenotype.

Publication Title

Id2 complexes with the SNAG domain of Snai1 inhibiting Snai1-mediated repression of integrin β4.

Alternate Accession IDs

E-GEOD-48204

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP151504
Kidney-resident macrophages promote a proangiogenic environment in the normal and chronically ischemic mouse kidney
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Renal artery stenosis (RAS) caused by narrowing of arteries is characterized by microvascular damage. Macrophages are implicated in repair and injury, but the specific populations responsible for these divergent roles have not been identified. Here, we characterized murine kidney F4/80+CD64+ macrophages in three transcriptionally unique populations. Using fate-mapping and parabiosis studies, we demonstrate that CD11b/cint are long-lived kidney-resident (KRM) while CD11chiMf, CD11cloMf are monocyte-derived macrophages. In a murine model of RAS, KRM self-renewed, while CD11chiMf and CD11cloMf increased significantly, which was associated with loss of peritubular capillaries. Replacing the native KRM with monocyte-derived KRM using bone marrow transplantation followed by RAS, amplified loss of peritubular capillaries. To further elucidate the nature of interactions between KRM and peritubular endothelial cells, we performed RNA-sequencing on flow-sorted macrophages from Sham and RAS kidneys. KRM showed a prominent activation pattern in RAS with significant enrichment in reparative pathways, like angiogenesis and wound healing. In culture, KRM increased proliferation of renal peritubular endothelial cells implying direct pro-angiogenic properties. Human homologs of KRM identified as CD11bintCD11cintCD68+ increased in post-stenotic kidney biopsies from RAS patients compared to healthy human kidneys, and inversely correlated to kidney function. Thus, KRM may play protective roles in stenotic kidney injury through expansion and upregulation of pro-angiogenic pathways Overall design: CD11chiMf Sham, n=3; CD11chiMf RAS, n=4; CD11cloMf Sham, n=3; CD11cloMf RAS, n=4; KRM Sham, n=4; KRM RAS, n=3;

Publication Title

Kidney-resident macrophages promote a proangiogenic environment in the normal and chronically ischemic mouse kidney.

Alternate Accession IDs

GSE116094

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE142102
Whole genome expression profiling of triple negative breast tumors in 226 African American women
  • organism-icon Homo sapiens
  • sample-icon 226 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Purpose: Black/African American (AA) women are twice as likely to be diagnosed with triple negative breast cancer (TNBC) compared to whites, an aggressive breast cancer subtype associated with poor prognosis. There are no routinely used targeted clinical therapies for TNBC; thus there is a clear need to identify prognostic markers and potential therapeutic targets. Methods: We evaluated expression of 27,016 genes in 155 treatment-naïve TN tumors from AA women in Detroit. Associations with survival were evaluated using Cox proportional hazards models adjusting for stage and age at diagnosis, and p-values were corrected using a false discovery rate. Our validation sample consisted of 158 TN tumors (54 AA) from The Cancer Genome Atlas (TCGA). Meta-analyses were performed to obtain summary estimates by combining TCGA and Detroit AA cohort results. Results: In the Detroit AA cohort, CLCA2 [Hazard ratio (HR)=1.56, 95% confidence interval (CI) 1.31-1.86, nominal p=5.1x10-7, FDR p=0.014], SPIC [HR=1.47, 95%CI 1.26-1.73, nominal p=1.8x10-6, FDR p=0.022], and MIR4311 [HR=1.57, 95% CI 1.31-1.92, nominal p=2.5x10-5, FDR p=0.022] expression were associated with overall survival. Further adjustment for treatment and breast cancer specific survival analysis did not substantially alter effect estimates. Meta-analysis with TCGA data showed that CLCA2 and SPIC were associated with overall survival for TNBC among AA women. Conclusions: We identified three potential prognostic markers for TNBC in AA women, for which SPIC may be an AA-specific prognostic marker.

Publication Title

CLCA2 expression is associated with survival among African American women with triple negative breast cancer.

Alternate Accession IDs

E-GEOD-142102

Sample Metadata Fields

Age, Treatment, Race

View Samples
accession-icon GSE35819
Comparison of hypoxia (4 % O2) cultured human embryonic stem cells (hESCs) to normoxia (21 % O2) cultured
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Human Exon 1.0 ST Array (huex10st)

Description

We compared the transcriptome at gene expression level in hypoxic and normoxic conditions.

Publication Title

Continuous hypoxic culturing of human embryonic stem cells enhances SSEA-3 and MYC levels.

Alternate Accession IDs

E-GEOD-35819

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE39916
Expression data from murine bone marrow-resident plasma cells and spleen mature follicular B cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

CD138+ B220- plasma cells were sorted from bone marrow and B220+ CD23+ mature follicular B cells were sorted from the spleens. Plasma cells were sorted from C57BL/6 mice 7 days after boosting with antigen, with mice first primed with an i.p. injection of KLH/IFA followed by boost at day 21 with KLH/PBS i.p. Mature B cells were sorted from antigen-nave C57BL/6 mice.

Publication Title

Heterogeneous nuclear ribonucleoprotein L-like (hnRNPLL) and elongation factor, RNA polymerase II, 2 (ELL2) are regulators of mRNA processing in plasma cells.

Alternate Accession IDs

E-GEOD-39916

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42257
Murine bone marrow gene expression profiling
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mice have been treated with NOX-A12. Whole BM cells have been harvested, RNA isolated, and gene expression profiling was performed on cDNA using Mouse Genome 430 2.0 array. Untreated mice have been used as control.

Publication Title

SDF-1 inhibition targets the bone marrow niche for cancer therapy.

Alternate Accession IDs

E-GEOD-42257

Sample Metadata Fields

Treatment

View Samples
accession-icon SRP070657
An integrative transcriptomics approach identifies miR-503 as a candidate master regulator of the estrogen response [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Estrogen receptor a (ERa) is an important biomarker of breast cancer severity and a common therapeutic target. Recent studies have demonstrated that in addition to its role in promoting proliferation, ERa also protects tumors against metastatic transformation. Current therapeutics antagonize ERa and interfere with both beneficial and detrimental signaling pathways stimulated by ERa. The goal of this study is to uncover the dynamics of coding and non-coding RNA (microRNA) expression in response to estrogen stimulation and identify potential therapeutic targets that more specifically inhibit ERa-stimulated growth and survival pathways without interfering with its protective features. To achieve this, we exposed MCF7 cells (an estrogen receptor positive model cell line for breast cancer) to estrogen and prepared a time course of paired mRNA and miRNA sequencing libraries at ten time points throughout the first 24 hours of the response to estrogen. From these data, we identified three primary expression trends—transient, induced, and repressed—that were each enriched for genes with distinct cellular functions. Integrative analysis of paired mRNA and microRNA temporal expression profiles identified miR-503 as the strongest candidate master regulator of the estrogen response, in part through suppression of ZNF217—an oncogene that is frequently amplified in cancer. We confirmed experimentally that miR-503 directly targets ZNF217 and that over-expression of miR-503 suppresses breast cancer cell proliferation. Overall, these data indicate that miR-503 acts as a potent estrogen-induced tumor suppressor microRNA that opposes cellular proliferation and has promise as a therapeutic for breast cancer. More generally, our work provides a systems-level framework for identifying functional interactions that shape the temporal dynamics of gene expression. Overall design: Quantification of mRNAs in MCF7 cells responding to estrogen following a period of estrogen starvation. Three independent biological replicates (30 samples: 3 replicates x 10 time points) of MCF7 cells were exposed to 10nM Estradiol for 0, 1, 2, 3, 4, 5, 6, 8, 12 , or 24 hours, and total RNA was extracted from the samples. Total RNA was used to generate paired RNA and miRNA sequencing. RNA libraries were prepared using an Illumina TruSeq stranded mRNA library preparation kit.

Publication Title

An integrative transcriptomics approach identifies miR-503 as a candidate master regulator of the estrogen response in MCF-7 breast cancer cells.

Alternate Accession IDs

GSE78167

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE39883
Expression data from AML1-ETO (AE)-expressing murine bone marrow (BM) cells treated with retinoids
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

AE-expressing murine BM cells treated with all-trans retinoic acid (ATRA) in semi-solid methycellulose-based cultures show an increase in self-renewal capacity whilst treatment with a specific RARa agonist NRX195183 reduces their clonogenicity. Gene expression analysis was performed to further investigate the molecular mechanisms underlying these observations. Upregulated gene sets were identified in the ATRA-treated AE BM cells.

Publication Title

ATRA and the specific RARα agonist, NRX195183, have opposing effects on the clonogenicity of pre-leukemic murine AML1-ETO bone marrow cells.

Alternate Accession IDs

E-GEOD-39883

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0