refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 2359 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE60771
Testing gene expression changes in VCaP upon depletion of the mutated ETS transcription factor ERG
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

VCaP cells expressing inducible shRNAs for either ERG or a non-targeting control were treated with Doxycycline for 1, 3, 7 and 10 days prior to collection

Publication Title

TMPRSS2:ERG blocks neuroendocrine and luminal cell differentiation to maintain prostate cancer proliferation.

Alternate Accession IDs

E-GEOD-60771

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP046010
Investigating gene expression changes in wildtype and TMPRSS2-ERG homozygous mouse prostate tissue
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

A transgenic TMPRSS2:ERG mouse model was engineered in FVB background and compared to its wildtype counterpart in the absence of any treatment This experiment is designed to look at ERG-dependent changes in phenotype and gene expression Overall design: A loxP-GFP-loxP-hERG exon 4-11 cassette was inserted into a BAC clone containing the TMPRSS2 locus using a recombineering kit. This modified BAC was used for pronuclear injection and generation of germline-transmitting mice. One line expressing high GFP was used for pronuclear injection of Cre protein and one sub-line that transmitted the TMPRSS2:ERG transgene into the germline was subsequently bred to homozygosity.

Publication Title

TMPRSS2:ERG blocks neuroendocrine and luminal cell differentiation to maintain prostate cancer proliferation.

Alternate Accession IDs

GSE61008

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16161
Broad defects in epidermal cornification in atopic dermatitis (AD) identified through genomic analysis
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study we used genomic profiling to characterize differences in expression of genes related to epidermal growth/differentiation and inflammatory circuits in skin lesions of psoriasis and atopic dermatitis (AD), comparing expression values to normal skin. Skin biopsies were collected from 9 patients with chronic atopic dermatitis, 15 psoriasis patients, and 9 healthy volunteers.

Publication Title

Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis.

Alternate Accession IDs

E-GEOD-16161

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE46836
Expression data from murine sarcomas
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The cell of origin for rhabdomyosarcoma (RMS) and undifferentiated pleomorphic sarcoma (UPS) remains to be determined. We utilized two skeletal muscle specific inducible Cre mouse lines to transform both skeletal muscle stem cells and progenitors to determine which cells give rise to RMS and UPS.

Publication Title

Distinct and overlapping sarcoma subtypes initiated from muscle stem and progenitor cells.

Alternate Accession IDs

E-GEOD-46836

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP074850
Systems genetics reveals a transcriptional network associated with susceptibility in the maize-gray leaf spot pathosystem
  • organism-icon Zea mays
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Background: Maize plants developed typical gray leaf spot disease (GLS) symptoms initiating at the lower leaves and progressing to upper leaves through the season. Leaf material was collected at 77 days after planting, at which stage there were a large number of GLS disease necrotic lesions on lower leaves (8% surface area on average determined by digital image analysis), but very few lesions and only at chlorotic stage on leaves above the ear (average of 0.2% lesion surface area). Method:To collect material that reflected a difference between C.zeina infected B73 leaves and control B73 leaf material, samples were collected from two lower GLS infected leaves (second and third leaf internode below ear) , and two upper leaves with minimal GLS symptoms (second and third internode above ear), respectively. The two lower leaves from each plant were pooled prior to RNA extraction, and the two upper leaves from each plant were pooled prior to RNA extraction. Upper and lower leaf samples from three maize B73 plants were subjected to RNA sequencing individually. The three maize plants were selected randomly as one plant per row from three rows of ten B73 plants each. Result: A systems genetics strategy revealed regions on the maize genome underlying co-expression of genes in susceptible and resistance responses, including a set of 100 genes common to the susceptible response of sub-tropical and temperate maize. Overall design: To collect material that reflected a difference between C.zeina infected B73 leaves and control B73 leaf material, samples were collected from two lower GLS infected leaves (second and third leaf internode below ear) , and two upper leaves with minimal GLS symptoms (second and third internode above ear), respectively. The two lower leaves from each plant were pooled prior to RNA extraction, and the two upper leaves from each plant were pooled prior to RNA extraction. Upper and lower leaf samples from three maize B73 plants were subjected to RNA sequencing individually. The three maize plants were selected randomly as one plant per row from three rows of ten B73 plants each.

Publication Title

Systems genetics reveals a transcriptional network associated with susceptibility in the maize-grey leaf spot pathosystem.

Alternate Accession IDs

GSE81344

Sample Metadata Fields

Subject

View Samples
accession-icon E-MEXP-171
Transcription profiling of zebrafish germ layer morphogenesis
  • organism-icon Danio rerio
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

In gastrulation, distinct progenitor cell populations are induced and sorted into the three germ layers ectoderm, mesoderm and endoderm. In order to identify genes involved in germ layer specification and morphogenesis, we identified genes differentially expressed between ectodermal and mesendodermal progenitor cells. To do so, we first generated highly enriched pools of ectodermal and mesendodermal progenitor cells. Mesendodermal cells were generated by over-expressing the Nodal signal Cyclops in wild type embryos and ectodermal cells were taken from mz-one-eyed-pinhead (oep) mutant embryos. We then compared the transcriptome of ectodermal versus mesendodermal cells taken from embryos at 7 hours post fertilization (hpf). In wild type embryos at this stage (70% epiboly), the first ectodermal and mesendodermal progenitor cells have already been sorted into their respective germ layers and ingression of mesendodermal progenitors is still ongoing.

Publication Title

Identification of regulators of germ layer morphogenesis using proteomics in zebrafish.

Alternate Accession IDs

None

Sample Metadata Fields

Age, Specimen part, Subject, Time

View Samples
accession-icon GSE54484
Identification of protein kinase C beta 2 regulated genes early in dendritic cell differentiation
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Dendritic cells (DC) arise from a diverse group of hematopoietic progenitors and have marked phenotypic and functional heterogeneity. We have found previously that activation of protein kinase C beta 2 (PRKCB2) by cytokines or phorbol esters drives normal human CD34(+) hematopoietic progenitors and myeloid leukemic blasts (KG1, K562 cell lines, and primary patient blasts) to differentiate into DC, but the genetic program triggered by PRKCB2 activation that results in DC differentiation is only beginning to be characterized. Of the cPKC isoforms, only PRKCB2 was consistently activated by DC differentiation-inducing stimuli in normal and leukemic progenitors. To examine early changes in gene expression following PRKCB2 activation, we employed the following cell lines: (1) the CD34(+) human acute myeloid leukemia derived cell line KG1, which undergoes DC differentiation following phorbol ester treatment; (2) KG1a, a spontaneously arising differentiation-resistant daughter cell line of KG1 that has lost PRKCB2 expression; (3) clones established from KG1a that stably express exogenous PRKCB2-GFP fusion proteins and are once again able to undergo DC differentiation (KG1a-PRKCB2-GFP Clone E9 and Clone E11). We examined changes in gene expression in these cells following treatment with the phorbol ester PMA (phorbol 12-myristate 13-acetate) for 2 hours. Since KG1 and KG1a differ in PRKCB2 expression but have similar expression of the other protein kinase C isoforms, this protocol will allow for the identification of genes regulated by PRKCB2 activation.

Publication Title

Tumor-induced STAT3 signaling in myeloid cells impairs dendritic cell generation by decreasing PKCβII abundance.

Alternate Accession IDs

E-GEOD-54484

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Treatment

View Samples
accession-icon GSE6875
Development of Regulatory T cell Precursors in the Absence of a Functional Foxp3 Protein
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To analyze gene expression in in regulatory T cell precursors that develop in the absence of a functional Foxp3 protein as compared to that of normal regulatory T cells

Publication Title

Regulatory T cell development in the absence of functional Foxp3.

Alternate Accession IDs

E-GEOD-6875

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE20246
Effect of Runx2 Knockdown by siRNA in granulosa cell cultures.
  • organism-icon Rattus norvegicus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

LH-indced RUNX2 expression is important for luteal gene expression.

Publication Title

RUNX2 transcription factor regulates gene expression in luteinizing granulosa cells of rat ovaries.

Alternate Accession IDs

E-GEOD-20246

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP003021
Genome-wide analysis of RNAs associated with Lin28
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

We used immunoprecipitation to pulldown Lin28 associated RNA targets and used genome-wide high throughput deep sequencing to identified those Lin28-associated RNAs. Keywords: Lin28 IP-RNAseq Overall design: Examination of Lin28 immunoprecipitated RNA transcripts

Publication Title

Genome-wide studies reveal that Lin28 enhances the translation of genes important for growth and survival of human embryonic stem cells.

Alternate Accession IDs

GSE23109

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0