refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 489 results
Sort by

Filters

Organism

Technology

Platform

accession-icon SRP137731
DDX6 decouples translational repression from RNA degradation of miRNA targets [ESC EpiLC 4sU]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Translation and mRNA degradation are intimately connected, yet the mechanisms that regulate them are not fully understood. Here we examine the regulation of translation and mRNA stability in mouse embryonic stem cells (ESCs) and during differentiation. In contrast to previous reports, we found that transcriptional changes account for most of the molecular changes during ESC differentiation. Within ESCs translation level and mRNA stability are positively correlated. The RNA-binding protein DDX6 has been implicated in processes involving both translational repression and mRNA destabilization; in yeast DDX6 connects codon optimality and mRNA stability and in mammals DDX6 is involved in microRNA-mediated repression. We generated DDX6 KO ESCs and found that while there was minimal connection between codon usage and stability changes, the loss of DDX6 leads to the translational depression of microRNA targets. Surprisingly, the translational derepression of microRNA targets occurs without affecting mRNA stability. Furthermore, DDX6 KO ESCs share overlapping phenotypes and global molecular changes with ESCs that completely lack all microRNAs. Together our results demonstrate that the loss of DDX6 decouples the two forms of microRNA induced repression and emphasize that translational repression by microRNAs is underappreciated. Overall design: 4-thiouridine (4su) metabolic labeling was performed on mouse embryonic stem cells (ESCs) and Epiblast like cells (EpiLCs).

Publication Title

Decoupling the impact of microRNAs on translational repression versus RNA degradation in embryonic stem cells.

Alternate Accession IDs

GSE112764

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
accession-icon GSE32912
Expression profiling of attenuated mitochondrial function identifies retrograde signals in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Mitochondria are able to modulate cell state and fate during normal and pathophysiologic conditions through a nuclear mediated mechanism collectively termed as a retrograde response. Our previous studies in Drosophila have clearly established that progress through the cell cycle is precisely regulated by the intrinsic activity of the mitochondrion by specific signaling cascades mounted by the cell. As a means to further our understanding of how mitochondrial energy status affects nuclear control of basic cell decisions we have employed Affymetrix microarray-based transcriptional profiling of Drosophila S2 cells knocked down for the gene encoding subunit Va of the complex IV of the mitochondrial electron transport chain. The profiling data identifies up-regulation of glycolytic genes and metabolic studies confirm this increase in glycolysis. The transcriptional portrait which emerges implicates many signaling systems, including a p53 response, an insulin response, and up-regulation of conserved mitochondrial responses. This rich dataset provides many novel targets for further understanding the mechanism whereby the mitochondrion may direct cellular fate decisions. The data also provides a salient model of the shift of metabolism from a predominately oxidative state towards a predominately aerobic glycolytic state, and therefore provides a model of energy substrate management not unlike that found in cancer.

Publication Title

Expression profiling of attenuated mitochondrial function identifies retrograde signals in Drosophila.

Alternate Accession IDs

E-GEOD-32912

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE49331
Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia.

Alternate Accession IDs

E-GEOD-49331

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE49329
Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia (mRNA)
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The aim of this study was to determine the role that miRNAs have on influencing murine microgial phenotypes under M1(LPS) and M2a (IL-4) stimulating conditions.

Publication Title

Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia.

Alternate Accession IDs

E-GEOD-49329

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP019939
Using RNA-Seq to create sample-specific proteomic databases that enable mass spectrometric discovery of splice junction peptides
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Many new alternative splice forms have been detected at the transcript level using next generation sequencing (NGS) methods, especially RNA-Seq, but it is not known how many of these transcripts are being translated. Leveraging the unprecedented capabilities of NGS, we collected RNA-Seq and proteomics data from the same cell population (Jurkat cells) and created a bioinformatics pipeline that builds customized databases for the discovery of novel splice-junction peptides. Results: Eighty million paired-end Illumina reads and ~500,000 tandem mass spectra were used to identify 12,873 transcripts (19,320 including isoforms) and 6,810 proteins. We developed a bioinformatics workflow to retrieve high-confidence, novel splice junction sequences from the RNA data, translate these sequences into the analogous polypeptide sequence, and create a customized splice junction database for MS searching. Overall design: Jurkat T-cell mRNA was analyzed on an Illumina HiSeq2000. ~80 million paired end reads (2x200bp, ~350bp lengths) were collected.

Publication Title

Discovery and mass spectrometric analysis of novel splice-junction peptides using RNA-Seq.

Alternate Accession IDs

GSE45428

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP095535
Multiple mechanisms of global microRNA suppression in vertebrate oocytes [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Mouse oocyte maturation, fertilization, and reprogramming occur in the absence of transcription and thus must be regulated post-transcriptionally. Surprisingly, a major form of post-transcriptional regulation, microRNA-based transcript destabilization and translational inhibition, is lost during this developmental window. Here we evaluate the conservation, timing, and mechanism behind the loss of microRNA activity in oocytes. In both mouse and frogs, microRNA function was active in growing oocytes, but then lost during oocyte maturation. RNA-sequencing of the maturing oocytes uncovered expression of an alternative isoform of Ago2 lacking domains critical for its function. Introduction of full-length Ago2 together with an exogenous microRNA destabilized microRNA luciferase reporters. However, endogenous targets were still largely unaffected. These findings suggest that while it is possible to re-activate some aspects of microRNA activity by introducing full length Ago2, there are additional mechanisms to protect endogenous transcripts from microRNA activity in oocytes. Overall design: Total RNA from mouse GV and MII oocytes, embryonic stem cells, epi cells

Publication Title

Expression of Alternative Ago2 Isoform Associated with Loss of microRNA-Driven Translational Repression in Mouse Oocytes.

Alternate Accession IDs

GSE92761

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP091749
Genome-wide expression profiling and phenotypic evaluation of European maize inbreds at seedling stage in response to heat stress
  • organism-icon Zea mays
  • sample-icon 46 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

BACKGROUND: Climate change will lead in the future to an occurrence of heat waves with a higher frequency and duration than observed today, which has the potential to cause severe damage to seedlings of temperate maize genotypes. In this study, we aimed to (I) assess phenotypic variation for heat tolerance of temperate European Flint and Dent maize inbred lines, (II) investigate the transcriptomic response of temperate maize to linearly increasing heat levels and, (III) identify genes associated with heat tolerance in a set of genotypes with contrasting heat tolerance behaviour. RESULTS: Strong phenotypic differences with respect to heat tolerance were observed between the examined maize inbred lines on a multi-trait level. We identified 607 heat responsive genes as well as 39 heat tolerance genes. CONCLUSION: Our findings indicate that individual inbred lines developed different genetic mechanisms in response to heat stress. We applied a novel statistical approach enabling the integration of multiple genotypes and stress levels in the analysis of abiotic stress expression studies. Overall design: Identifcation of differentially expressed genes between 8 genotypes and 3 heat levels

Publication Title

Genome-wide expression profiling and phenotypic evaluation of European maize inbreds at seedling stage in response to heat stress.

Alternate Accession IDs

GSE88917

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE46293
Expression data of multiple sclerosis patients receiving Interferon-beta therapy
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), TaqMan(r) Array Human MicroRNA A Cards v2.0

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MicroRNA expression changes during interferon-beta treatment in the peripheral blood of multiple sclerosis patients.

Alternate Accession IDs

E-GEOD-46293

Sample Metadata Fields

Sex, Disease

View Samples
accession-icon GSE46280
Expression data of multiple sclerosis patients receiving Interferon-beta therapy [HG-U133_Plus_2]
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The purpose of this study was to investigate the expression dynamics of mRNAs and microRNAs in response to subcutaneous IFN-beta-1b treatment (Betaferon, 250 g every other day) in patients with clinically isolated syndrome (CIS) suggestive of multiple sclerosis (MS) or relapsing-remitting type of the disease (RRMS).

Publication Title

MicroRNA expression changes during interferon-beta treatment in the peripheral blood of multiple sclerosis patients.

Alternate Accession IDs

E-GEOD-46280

Sample Metadata Fields

Sex, Disease

View Samples
accession-icon GSE143297
Canonical BMP signaling executes epithelial-mesenchymal transition downstream of SNAIL1
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Epithelial-mesenchymal transition (EMT) is a pivotal process in development and disease. In carcinogenesis, various signaling pathways are known to trigger EMT by inducing the expression of EMT transcription factors (EMT-TFs) like SNAIL1, ultimately promoting invasion, metastasis and chemoresistance. However, how EMT is executed downstream of EMT-TFs is incompletely understood. Here, using human colorectal cancer (CRC) and mammary cell line models of EMT, we demonstrate that SNAIL1 critically relies on bone morphogenetic protein (BMP) signaling for EMT execution. This activity requires the transcription factor SMAD4 common to BMP/TGFβ pathways, but is TGFβ signaling-independent. Further, we define a signature of BMP-dependent genes in the EMT-transcriptome which orchestrate EMT-induced invasiveness, and are found to be regulated in human CRC transcriptomes and during EMT in vivo. Collectively, our findings substantially augment the knowledge of mechanistic routes whereby EMT can be effectuated, which is relevant for the conceptual understanding and therapeutic targeting of EMT processes.

Publication Title

Canonical BMP Signaling Executes Epithelial-Mesenchymal Transition Downstream of SNAIL1.

Alternate Accession IDs

E-GEOD-143297

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0