refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 12 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE15398
Evaluation of methods for amplification of picogram amounts of total RNA for whole genome expression profiling
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

For more than a decade, microarrays have been a powerful and widely used tool to explore the transcriptome of biological systems. However, the amount of biological material from cell sorting or laser capture microdissection is much too small to perform microarray studies. To address this issue, RNA amplification methods have been developed to generate sufficient targets from picogram amounts of total RNA to perform microarray hybridisation. In this study, four commercial protocols for amplification of picograms amounts of input RNA for microarray expression profiling were evaluated and compared. The quantitative and qualitative performances of the methods were assessed. Microarrays were hybridised with the amplified targets and the amplification protocols were compared with respect to the quality of expression profiles, reproducibility within a concentration range of input RNA, and sensitivity.

Publication Title

Evaluation of methods for amplification of picogram amounts of total RNA for whole genome expression profiling.

Alternate Accession IDs

E-GEOD-15398

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE29718
An early inflammatory gene profile in visceral adipose tissue in children
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The aim of this study was to characterize expression profiles of visceral and subcutaneous adipose tissue in children. Adipose tissue samples were collected from children having elective surgery (n=71, [54 boys], 6.0 +- 4.3 years). Affymetrix microarrays (n=20) were performed to characterize the functional profile and identify genes of interest in adipose tissue. Visceral adipose tissue had an overrepresentation of Gene Ontology themes related to immune and inflammatory responses and subcutaneous adipose tissue had an overrepresentation of themes related to adipocyte growth and development. Likewise, qPCR performed in the whole cohort showed a 30-fold increase in haptoglobin (P < 0.005), 7-fold increase in IL-10 (P < 0.001), 8-fold decrease in VEGF (P < 0.01) and a 28-fold decrease in TBOX15 (P < 0.001) in visceral compared to subcutaneous adipose tissue.The inflammatory pattern in visceral adipose tissue may represent an early stage of the adverse effects of this depot, and combined with chronic obesity, may contribute to increased metabolic and cardiovascular risk.

Publication Title

An early inflammatory gene profile in visceral adipose tissue in children.

Alternate Accession IDs

E-GEOD-29718

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE35306
Combined hepatocellular-cholangiocarcinomas exhibit progenitor features and activation of Wnt and TGFbeta signaling pathways
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Primary liver tumours include hepatocellular carcinomas (HCC), cholangiocarcinomas (CC) and a group of rare tumours exhibiting biliary and hepatocytic differentiation called combined hepatocholangiocarcinomas (cHCC-CC). To better define this latter group, we take advantage of a series of these tumours based on their morphological characteristics and we performed transcriptional analysis allowing thereafter global comparison with published data. We show that most cHCC-CCs express progenitor cell traits, are committed to biliary lineage and are mainly associated to the activation of Wnt/beta-catenin and TGFbeta signalling pathways. Wnt/beta-catenin pathway activation in cHCC-CC is evidenced by the expression of both its direct targets such as LEF1 and EPCAM. In addition, extracellular matrix (ECM) genes and ECM-remodelling genes which are upon the control of TGF profibrotic program were found up-regulated in cHCC-CC. Interestingly, we show that CC and most cHCC-CC share characteristics associated to a subtype of poorly differentiated HCC suggesting that these tumours could originate from a stem/progenitor cell. The plasticity of these cells may explain the phenotypical heterogeneity of these tumors with the maintenance of some hepatocellular differentiation features such as albumin expression. Interestingly, this is shared by at least one third of CC, raising the hypothesis of a potential continuum between CC, cHCC-CC and poorly differentiated HCC.

Publication Title

Combined hepatocellular-cholangiocarcinomas exhibit progenitor features and activation of Wnt and TGFβ signaling pathways.

Alternate Accession IDs

E-GEOD-35306

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE18150
DZNep-treated glioblastoma multiforme cancer stem cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Overexpression of the Polycomb group protein Enhancer of Zeste Homolog 2 (EZH2) occurs in diverse malignancies, including prostate cancer, breast cancer, and glioblastoma multiforme (GBM) (1). Based on its ability to modulate transcription of key genes implicated in cell cycle control, DNA repair and cell differentiation, EZH2 is believed to play a crucial role in tissue-specific stem cell maintenance and tumor development. Here we show that targeted pharmacologic disruption of EZH2 by the S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin A (DZNep), or its specific down-regulation by shRNA, strongly impairs GBM cancer stem cell self-renewal in vitro and tumor-initiating capacity in vivo. Using genome-wide expression analysis of DZNep-treated GBM cancer stem cells, we found the expression of c-myc, recently reported to be essential for GBM cancer stem cells, to be strongly repressed upon EZH2 depletion. Specific shRNA-mediated down-regulation of EZH2 in combination with chromatin immunoprecipitation (ChIP) experiments revealed that c-myc is a direct target of EZH2 in GBM cancer stem cells. Taken together, our observations provide evidence that direct transcriptional regulation of c-myc by EZH2 may constitute a novel mechanism underlying GBM cancer stem cell maintenance and suggest that EZH2 may be a valuable new therapeutic target for GBM management.

Publication Title

EZH2 is essential for glioblastoma cancer stem cell maintenance.

Alternate Accession IDs

E-GEOD-18150

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE45626
Expression data from IGF-1R targeting in 33 NCI-H526 SCLC (small-cell lung cancer) xenografts
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Insulin-like growth factor receptor-1 (IGF-1R) inhibition could be a relevant therapeutic approach in small cell lung cancer (SCLC) given the importance of an IGF-1R autocrine loop and its role in DNA damage repair processes. We assessed IGF-1R and pAkt protein expression in 83 SCLC human specimens. The efficacy of R1507 (a monoclonal antibody directed against IGF-1R) alone or combined with cisplatin or ionizing radiation (IR) was evaluated in H69, H146 and H526 cells in vitro and in vivo. Innovative genomic and functional approaches were conducted to analyze the molecular behavior under the different treatment conditions. A total of 53% and 37% of human specimens expressed IGF-1R and pAkt, respectively. R1507 demonstrated single agent activity in H146 and H526 cells but not in H69 cells. R1507 exhibited synergistic effects with both Cisplatin and IR in vitro. The triple combination R1507-Cisplatin-IR led to a dramatic delay in tumor growth compared to Cisplatin-IR in H526 cells. Analyzing the apparent absence of antitumoral effect of R1507 alone in vivo, we observed a transient reduction of IGF-1R staining intensity in vivo, concomitant to the activation of multiple cell surface receptors and intracellular proteins involved in proliferation, angiogenesis and survival. Finally, we identified that the nucleotide excision repair pathway (NER) was mediated after exposure to R1507-CDDP and R1507-IR in vitro and in vivo. In conclusion, adding R1507 to the current standard Cisplatin-IR doublet reveals remarkable chemo- and radiosensitizing effects in selected SCLC models and warrants to be investigated in the clinical setting.

Publication Title

IGF-1R targeting increases the antitumor effects of DNA-damaging agents in SCLC model: an opportunity to increase the efficacy of standard therapy.

Alternate Accession IDs

E-GEOD-45626

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE60258
Calcineurin-dependent transcriptome in ICN1 (activated NOTCH1)-induced T cell acute lymphoblastic leukemia (T-ALL)
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Activated NOTCH1 induces T-ALL in mice when transduced in bone marrow (BM) cells. T-ALL cells activate the calcineurin/NFAT pathway in vivo (Medyouf H. et al. Nat Med 2007 [PMID 17515895]).

Publication Title

Leukemia-initiating cell activity requires calcineurin in T-cell acute lymphoblastic leukemia.

Alternate Accession IDs

E-GEOD-60258

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP053101
Impact of bariatric surgery on RNA-seq gene expression profiles of adipose tissue in humans
  • organism-icon Homo sapiens
  • sample-icon 88 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Bariatric surgery is the most effective therapy of severe human obesity. It is associated with improvements in metabolic and non metabolic co-morbidities which are thought to be mediated by a decrease of adipose tissue inflammation. However, the molecular mechanisms behind these beneficial effects are poorly understood. We analyzed expression profiles in subcutaneous adipose tissue from 22 obese women before and 3 months after surgery using the RNA-seq technology. Of 15,972 detected genes, 1214 were differentially expressed after surgery. Upregulated genes were mostly involved in the basal cellular machinery. Downregulated genes were enriched in metabolic functions of adipose tissue. At baseline, we identified 26 modules of coexpressed genes. The four most stable modules reflected the innate and adaptive immune responses of adipose tissue, including a general signature of innate immune cells, an adaptive immune response elicited by T lymphocytes, a neutrophil-mediated inflammatory signature and an interferon-signaling pathway, respectively. After surgery, a few crucial molecules involved in chemotaxis and activation of immune cells were disconnected from their respective networks. These molecules may represent therapeutic targets against adipose inflammation. Overall design: mRNA sequencing of subcutaneous adipose tissue (SAT) samples from 22 obese women before and 3 months after bariatric surgery

Publication Title

Bariatric Surgery Induces Disruption in Inflammatory Signaling Pathways Mediated by Immune Cells in Adipose Tissue: A RNA-Seq Study.

Alternate Accession IDs

GSE65540

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12882
Replacing skeletal muscle alpha-actin with cardiac actin in mouse skeletal muscle
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina mouse-6 v1.1 expression beadchip

Description

Skeletal muscle actin mice (Crawford et al., (2002) Mol Cell Biol 22, 5587) were crossed with cardiac actin transgenic mice (termed "ACTC^Coco" or "Coco" for short), to produce mice that had cardiac actin instead of skeletal muscle actin in their skeletal muscles (termed "ACTC^Co/KO" or for short "Coco/KO"). Microarray analysis using the Illumina mouse-6 v1.1 expression beadchip was performed on RNA extraced from the soleus muscle of Coco/KO mice and wildtype mice, to confirm the swith in actin isoform expression, and to determine what other differences might exist between wildtype mice and the Coco/KO mice.

Publication Title

Rescue of skeletal muscle alpha-actin-null mice by cardiac (fetal) alpha-actin.

Alternate Accession IDs

E-GEOD-12882

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE56265
Transcriptomic analysis of human breast and prostate cancer cell lines on lysophosphatidic acid (LPA) stimulation
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

LPA is a natural bioactive lipid with growth factor-like functions due to activation of series of six G protein-coupled receptors (LPA1-6).

Publication Title

Identification of heparin-binding EGF-like growth factor (HB-EGF) as a biomarker for lysophosphatidic acid receptor type 1 (LPA1) activation in human breast and prostate cancers.

Alternate Accession IDs

E-GEOD-56265

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE13869
Transcriptome of the Nxnl1-/- mouse retina
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Rod-derived Cone Viability Factor (RdCVF, alias nxnl1) is a retina-specific protein identified for its therapeutic potential in supporting cone survival during retinal degeneration.

Publication Title

The disruption of the rod-derived cone viability gene leads to photoreceptor dysfunction and susceptibility to oxidative stress.

Alternate Accession IDs

E-GEOD-13869

Sample Metadata Fields

Disease, Disease stage

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0