refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 936 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE28406
Characteristic expression of major histocompatibility complex and immune privilege genes in human pluripotent stem cells and the derivatives
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Pluripotent stem cells, including human embryonic stem (hES) and induced pluripotent stem (hiPS) cells, have been regarded as useful sources for cell?based transplantation therapy. However immunogenicity of the cells remains the major determinant for successful clinical application. We report the examination of several hES cell lines (NTU1 and H9), hiPS cell lines, and their derivatives (including stem cell?derived hepatocytes) for the expression of major histocompatibility complex (MHC), natural killer (NK) cell receptor (NKp30, NKp44, NKp46) ligand, immune?related genes, human leukocyte antigen (HLA) haplotyping, and the effects in functional mixed lymphocyte reaction (MLR). Flow cytometry showed lower levels (percentages and fluorescence intensities) of MHC class I (MHC?I) molecules, 2?microglobulin and HLA?E in undifferentiated stem cells, but the levels were increased after co?treatment with interferon gamma and/or in vitro differentiation. Antigen presenting cell markers (CD11c, CD80 and CD86) and MHC?II (HLA?DP, DQ and DR) remained low throughout the treatments. Recognitions of stem cells/derivatives by NK lysis receptors were lower or absent. Activation of responder lymphocytes was significantly lower by undifferentiated stem cells than by allogeneic lymphocytes in MLR, but differentiated NTU1 hES cells induced a cell number?dependent lymphocyte proliferation comparable with that by allogeneic lymphocytes. Interestingly activation of lymphocytes by differentiated hiPS cells or H9 cells became blunted at higher cell numbers. Real?time RT?PCR showed significant differential expression of immune privilege genes (TGF?2, Arginase 2, Indole 1, GATA3, POMC, VIP, CALCA, CALCB, IL?1RN, CD95L, CR1L, Serpine 1, HMOX1, IL6, LGALS3, HEBP1, THBS1, CD59 and LGALS1) in pluripotent stem cells/derivatives when compared to somatic cells. It is concluded that pluripotent stem cells/derivatives are predicted to be immunogenic, though evidences suggest some levels of potential immune privilege. In addition, differential immunogenicity may exist between different pluripotent stem cell lines and their derivatives

Publication Title

Characteristic expression of major histocompatibility complex and immune privilege genes in human pluripotent stem cells and their derivatives.

Alternate Accession IDs

E-GEOD-28406

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE49237
Analysis of TBR1 downnstream target genes in embryonic forebrains
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

TBR1 is a forebrain specific T-box transcription factor. Tbr1-/- mice have been characterized by defective axonal projections from cerebral cortex and abnormal neuronal migration of cerebral cortex and amygdala.

Publication Title

Tbr1 haploinsufficiency impairs amygdalar axonal projections and results in cognitive abnormality.

Alternate Accession IDs

E-GEOD-49237

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6708
Nucleus- and cell-specific gene expression in monkey thalamus
  • organism-icon Macaca mulatta
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Nuclei of the mammalian thalamus are aggregations of neurons with unique architectures and input-output connections, yet the molecular determinants of their organizational specificity remain unknown. By comparing expression profiles of thalamus and cerebral cortex in adult rhesus monkeys we identified transcripts that are unique to dorsal thalamus or to individual nuclei within it. Real-time quantitative polymerase chain reaction and in situ hybridization analyses confirmed the findings. Expression profiling of individual nuclei microdissected from the dorsal thalamus revealed additional subsets of nucleus-specific genes. Functional annotation using Gene Ontology (GO) vocabulary and Ingenuity Pathway analysis revealed over-representation of GO categories related to development, morphogenesis, cell-cell interactions, and extracellular matrix within the thalamus- and nucleus-specific genes-many involved in the Wnt signaling pathway. Examples included the transcription factor TCF7L2, localized exclusively to excitatory neurons, a calmodulin-binding protein PCP4, the bone extracellular matrix molecules SPP1 and SPARC, and other genes involved in axon outgrowth and cell matrix interactions. Other nucleus-specific genes such as CBLN1 are involved in synaptogenesis. The genes identified likely underlie nuclear specification, cell phenotype and connectivity during development and their maintenance in the adult thalamus.

Publication Title

Nucleus- and cell-specific gene expression in monkey thalamus.

Alternate Accession IDs

E-GEOD-6708

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP018814
The Translation Initiation Factor eIF3h Targets Specific Transcripts to Polysomes during Embryogenesis
  • organism-icon Danio rerio
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

We have sequenced the polysome-associated translating mRNAs from stage-matched wild-type and eif3ha morphant embryos at ~24 hpf stage to identify transcripts translationally regulated by eIF3ha. As a control, we have also sequenced total mRNAs from the stage-matched wild-type and eif3ha morphants as well at ~ 24 hpf. Overall design: Polysome-associated mRNAs were isolated from 300 zebrafish embryos. Total RNA was isolated from 50 zebrafish embryos. Single 36-base pair reads were sequenced on the Illumina Genome Analyzer Iix.

Publication Title

Translation initiation factor eIF3h targets specific transcripts to polysomes during embryogenesis.

Alternate Accession IDs

GSE44584

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE96796
Protein disulfide isomerase inhibition synergistically enhances the efficacy of sorafenib for hepatocellular carcinoma
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip (gene symbol), Illumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Protein disulfide isomerase inhibition synergistically enhances the efficacy of sorafenib for hepatocellular carcinoma.

Alternate Accession IDs

E-GEOD-96796

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE96792
Protein disulfide isomerase inhibition synergistically enhances the efficacy of sorafenib for hepatocellular carcinoma [Hep3B]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Sorafenib is the only approved targeted drug for hepatocellular carcinoma (HCC), but its effect on patients survival gain is limited and varies over a wide range depending on patho-genetic conditions. Thus, enhancing the efficacy of sorafenib and finding a reliable predictive biomarker are crucuial to achieve efficient control of HCCs. In this study, we employed a systems approach by combining transcriptome analysis of the mRNA changes in HCC cell lines in response to sorafenib with network analysis to investigate the action and resistance mechanism of sorafenib. Gene ontology and gene set analysis revealed that proteotoxic stress and apoptosis modules are activated in the presence of sorafenib. Further analysis of the endoplasmic reticulum (ER) stress network model combined with in vitro experiments showed that introducing an additional stress by treating the orally active protein disulfide isomerase (PDI) inhibitor (PACMA 31) can synergistically increase the efficacy of sorafenib in vitro and in vivo, which was confirmed using a mouse xenograft model. We also found that HCC patients with high PDI expression show resistance to sorafenib and poor clinical outcomes, compared to the low PDI expression group. These results suggest that PDI is a promising therapeutic target for enhancing the efficacy of sorafenib and can also be a biomarker for predicting sorafenib responsiveness.

Publication Title

Protein disulfide isomerase inhibition synergistically enhances the efficacy of sorafenib for hepatocellular carcinoma.

Alternate Accession IDs

E-GEOD-96792

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE96794
Protein disulfide isomerase inhibition synergistically enhances the efficacy of sorafenib for hepatocellular carcinoma [Huh7]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Sorafenib is the only approved targeted drug for hepatocellular carcinoma (HCC), but its effect on patients survival gain is limited and varies over a wide range depending on patho-genetic conditions. Thus, enhancing the efficacy of sorafenib and finding a reliable predictive biomarker are crucuial to achieve efficient control of HCCs. In this study, we employed a systems approach by combining transcriptome analysis of the mRNA changes in HCC cell lines in response to sorafenib with network analysis to investigate the action and resistance mechanism of sorafenib. Gene ontology and gene set analysis revealed that proteotoxic stress and apoptosis modules are activated in the presence of sorafenib. Further analysis of the endoplasmic reticulum (ER) stress network model combined with in vitro experiments showed that introducing an additional stress by treating the orally active protein disulfide isomerase (PDI) inhibitor (PACMA 31) can synergistically increase the efficacy of sorafenib in vitro and in vivo, which was confirmed using a mouse xenograft model. We also found that HCC patients with high PDI expression show resistance to sorafenib and poor clinical outcomes, compared to the low PDI expression group. These results suggest that PDI is a promising therapeutic target for enhancing the efficacy of sorafenib and can also be a biomarker for predicting sorafenib responsiveness.

Publication Title

Protein disulfide isomerase inhibition synergistically enhances the efficacy of sorafenib for hepatocellular carcinoma.

Alternate Accession IDs

E-GEOD-96794

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE96793
Protein disulfide isomerase inhibition synergistically enhances the efficacy of sorafenib for hepatocellular carcinoma [HepG2]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Sorafenib is the only approved targeted drug for hepatocellular carcinoma (HCC), but its effect on patients survival gain is limited and varies over a wide range depending on patho-genetic conditions. Thus, enhancing the efficacy of sorafenib and finding a reliable predictive biomarker are crucuial to achieve efficient control of HCCs. In this study, we employed a systems approach by combining transcriptome analysis of the mRNA changes in HCC cell lines in response to sorafenib with network analysis to investigate the action and resistance mechanism of sorafenib. Gene ontology and gene set analysis revealed that proteotoxic stress and apoptosis modules are activated in the presence of sorafenib. Further analysis of the endoplasmic reticulum (ER) stress network model combined with in vitro experiments showed that introducing an additional stress by treating the orally active protein disulfide isomerase (PDI) inhibitor (PACMA 31) can synergistically increase the efficacy of sorafenib in vitro and in vivo, which was confirmed using a mouse xenograft model. We also found that HCC patients with high PDI expression show resistance to sorafenib and poor clinical outcomes, compared to the low PDI expression group. These results suggest that PDI is a promising therapeutic target for enhancing the efficacy of sorafenib and can also be a biomarker for predicting sorafenib responsiveness.

Publication Title

Protein disulfide isomerase inhibition synergistically enhances the efficacy of sorafenib for hepatocellular carcinoma.

Alternate Accession IDs

E-GEOD-96793

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP041363
An angiogenic role for the aryl hydrocarbon receptor in choroidal neovascularization
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We report that decreased expression and activity of AhR exacerbates murine neovascular age-related macular degeneration, and increases cell migration and tube formation. The mechanism involves increased expression of pro-angiogenic mediators and altered matrix degradation. The results of our study suggest that the AhR signaling pathway may be important in multiple AMD related pathways. Overall design: Gene expression analysis in the retinal pigment epithelium (RPE)-choroid tissue from AhR knockout mice contrasted against wild-type age-matched controls.

Publication Title

Aryl hydrocarbon receptor knock-out exacerbates choroidal neovascularization via multiple pathogenic pathways.

Alternate Accession IDs

GSE56983

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP033336
The splicing activator DAZAP1 integrates splicing control into MEK/Erk regulated cell proliferation and migration
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

DAZAP1 was depleted in culterd HEK 293T cells using shRNA and the resulting poly A RNA were isolated c-DNA library constructed and paired end sequenced on illumina Hi-seq 2000 platform the data was compared to a control shRNA depleted cell Overall design: Gene expression and splicing switches upon DAZAP1 knockdown

Publication Title

The splicing activator DAZAP1 integrates splicing control into MEK/Erk-regulated cell proliferation and migration.

Alternate Accession IDs

GSE52745

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0