refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 212 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE15258
Whole blood transcript profiling of rheumatoid arthritis patients
  • organism-icon Homo sapiens
  • sample-icon 83 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The whole blood was collected pre-treatment from rheumatoid arthritis patients starting the anti_TNF therapy. All patients were nave to anti_TNFs. The disease activity was measured using the DAS28 score at the pre-treatment visit1 (DAS28_v1) and 14 weeks after treatment visit3 (DAS28_v3). The response to the therapy was evaluated using the EULAR [European League Against Rheumatism] definition of the response. The objective of the data analysis was to identify gene expression coorelating with response as well as to identify genes that differentiate responders versus non-responders pre-treatment. The results of this investigation identified 8 trainscripts that predict responders vs. non-responders with 89% accuracy.

Publication Title

Convergent Random Forest predictor: methodology for predicting drug response from genome-scale data applied to anti-TNF response.

Alternate Accession IDs

E-GEOD-15258

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE27079
Expression data from epidermal stem cells isolated from dorsal skin of P19 Per1-Venus mice and Bmal1 epidermal knockout mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Epidermal stem cells ensure that skin homeostasis is maintained. In murine skin, epidermal stem cells cluster at specific niches where, under steady-state conditions, they undergo cycles of dormancy and activation1. When cellular replenishment is required, epidermal stem cells egress from the niche and proliferate for a limited number of times to subsequently feed into the differentiated compartment1-3. However, only a subset of stem cells becomes active during each round of morphogenesis, suggesting that stem cells coexist in heterogeneous responsive states within the same niche. Using a circadian clock fluorescent reporter mouse model, we show that the dormant epidermal stem cell niche contains two coexisting populations of stem cells at opposite phases of the clock, which are differentially predisposed to respond to homeostatic cues. In dormant niches, the core molecular clock protein Bmal1 transcriptionally modulates the expression of stem cell regulatory genes, including modulators of Wnt and TGFb, to create two coexisting stem cell populations, one predisposed, and the other less prone, to activation. Unbalancing this equilibrium of epidermal stem cells, through conditional epidermal deletion of Bmal1, resulted in a long-term progressive accumulation of non-responsive stem cells, premature impairment of tissue self-renewal, and a significant reduction in the development of squamous cell carcinomas. Our results indicate that the molecular clock machinery fine-tunes the spatiotemporal behavior of epidermal stem cells within their niche, and that perturbation of this mechanism affects tissue homeostasis and the predisposition to neoplastic transformation. The goals of this study was to compare the transcriptome of epidermal stem cells according to their circadian rhythm phase. We isolated epidermal stem cells (bulge cells; alpha6bright/CD34+ population) from 19 days old Per1-Venus mice and separated them according to Venusbright (clock positive) and Venus dim (clock negative). The goals of this study was to compare the transcriptome of epidermal stem cells in which their circadian rhythm machinery has been perturbed by deleting the gene that encodes for Bmal1. We compared the transcriptomes of basal interfollicular epidermis cells (alpha6 integrin bright/CD34- cells) from the dorsal skin of 1 year old BmalKO mice and their respective control littermates. Each array corresponds to purified cells from approximately 5 mice.

Publication Title

The circadian molecular clock creates epidermal stem cell heterogeneity.

Alternate Accession IDs

E-GEOD-27079

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE31257
Isolation and in vitro expansion of human colonic stem cells
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Isolation and in vitro expansion of human colonic stem cells.

Alternate Accession IDs

E-GEOD-31257

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE31255
Isolation and in vitro expansion of human colonic stem cells [Expression profile]
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Using the surface marker EPHB2, we have FACS-purified and profiled stem cell-enriched cell fractions from normal human mucosa, crypt proliferative progenitors and late transient amplifying cells to define a gene expression program specific for normal human colon epithelial stem cells

Publication Title

Isolation and in vitro expansion of human colonic stem cells.

Alternate Accession IDs

E-GEOD-31255

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE25282
HP1gamma Knock Down in Human cells
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Study of HP1 Knock Down on gene expression and splicing regulation in Human HeLa cells

Publication Title

Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons.

Alternate Accession IDs

E-GEOD-25282

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE75916
Expression data of epithelial organoid cultures generated from intestinal mucosa of non-IBD controls and patients with ulcerative colitis
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

The transcriptional signature of mucosa of patients with ulcerative colitis (UC) in remission reveals long-lasting changes in the epithelial barrier which persist once the inflammatory response has resolved. In order to investigate if these changes are caused by primary defects in the epithelial cells, we generated in vitro epithelial organoid cultures (EpOCs) from colon samples of non-IBD controls and UC patients.

Publication Title

Alterations in the epithelial stem cell compartment could contribute to permanent changes in the mucosa of patients with ulcerative colitis.

Alternate Accession IDs

E-GEOD-75916

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE27605
The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Using EphB2 or the ISC marker Lgr5, we have FACS-purified and profiled intestinal stem cells (ISCs), crypt proliferative progenitors and late transient amplifying cells to define a gene expression program specific for normal ISCs.

Publication Title

The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse.

Alternate Accession IDs

E-GEOD-27605

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE142219
ERK1/2 controlled genes ANGPT2 and CXCR4 mediate liver metastasis from colon cancer
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Carcinoma development in colorectal cancer (CRC) is driven by genetic alterations in numerous signaling pathways. Alterations in the RAS-ERK1/2 pathway are associated with the shortest overall survival for patients after diagnosis of CRC metastatic disease, but how RAS-ERK signaling regulates CRC metastasis is still unknown.

Publication Title

ERK1/2 Signaling Induces Upregulation of ANGPT2 and CXCR4 to Mediate Liver Metastasis in Colon Cancer.

Alternate Accession IDs

E-GEOD-142219

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE39397
Human CRC cell populations
  • organism-icon Homo sapiens
  • sample-icon 49 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation.

Alternate Accession IDs

E-GEOD-39397

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment, Subject

View Samples
accession-icon GSE39395
Expression profiles of cell populations purified from human CRC (3 ways)
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The survival of isolated metastatic cells and expansion into macroscopic tumour has been recognized as a limiting step for metastasis formation in several cancer types yet the determinants of this process remain largely uncharacterized. In colorectal cancer (CRC), we identify a transcriptional programme in tumour-associated stromal cells, which is intimately linked to a high risk of developing recurrent disease after therapy. A large proportion of CRCs display mutational inactivation of the TGF-beta pathway but paradoxically they are characterized by high TGF-beta production. In these tumours, TGF-beta instructs a transcriptional programme in stromal cells, which confers a high risk of developing metastatic disease.

Publication Title

Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation.

Alternate Accession IDs

E-GEOD-39395

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0