refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 170 results
Sort by

Filters

Organism

Technology

Platform

accession-icon SRP073206
Transcriptome analysis in a radiosensitive and a radioresistant cell line after ionizing radiation
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Differential gene expression profiling was performed in two lymphoblastoid cell lines with different radiosentivitity, one radiosensitive (RS) and another radioresistant (RR), after different post-irradiation times. A greater and a prolonged transcriptional response after irradiation was induced in the RS cell line. Functional analysis showed that 24 h after irradiation genes involved in DNA damage response, negative regulation of the cell cycle and apoptosis were still differentially up-regulated in the RS cell line but not in the RR cell line. Overall design: Sham-irradiated and irradiated (2 Gy) cell cultures of the RS and the RR cell line were incubated at 37ºC for 4 and 24 h and 14 days. After that, RNA was extracted and sequenced with QuantSeq technology

Publication Title

Differences in DNA Repair Capacity, Cell Death and Transcriptional Response after Irradiation between a Radiosensitive and a Radioresistant Cell Line.

Alternate Accession IDs

GSE80207

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject, Time

View Samples
accession-icon GSE10902
Differential expression between FHL2-/- and WT MEFs.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The LIM-only protein FHL2 acts as a transcriptional modulator that positively or negatively regulates multiple signaling pathways. We recently reported that FHL2 cooperates with CBP/p300 in the activation of -catenin/TCF target gene cyclin D1. In this paper, we demonstrate that FHL2 is associated with the cyclin D1 promoter at the TCF/CRE site, providing evidence that cyclin D1 is a direct target of FHL2. We show that deficiency of FHL2 greatly reduces the proliferative capacity of spontaneously immortalized mouse fibroblasts which is associated with decreased expression of cyclin D1 and p16INK4a, and hypophosphorylation of Rb. Reexpression of FHL2 in FHL2-null fibroblasts efficiently restores cyclin D1 levels and cell proliferative capacity, indicating that FHL2 is critical for cyclin D1 activation and cell growth. Moreover, ectopic cyclin D1 expression is sufficient to override growth inhibition of immortalized FHL2-null fibroblasts. Gene expression profiling revealed that FHL2 deficiency triggers a broad change of the cell cycle program that is associated with downregulation of several G1/S and G2/M cyclins, E2F transcription factors and DNA replication machinery, thus correlating with reduced cell proliferation. This change also involves downregulation of the negative cell cycle regulators, particularly INK4 inhibitors, which could counteract the decreased expression of cyclins, allowing cells to grow. Our study illustrates that FHL2 can act on different aspects of the cell cycle program to finely regulate cell proliferation.

Publication Title

The LIM-only protein FHL2 regulates cyclin D1 expression and cell proliferation.

Alternate Accession IDs

E-GEOD-10902

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14320
Basal and kainate-induced gene expression in A-CREB mouse hippocampi
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The cAMP responsive element binding protein (CREB) pathway has been involved in two major cascades of gene expression regulating neuronal function. The first one presents CREB as a critical component of the molecular switch that control longlasting forms of neuronal plasticity and learning. The second one relates CREB to neuronal survival and protection. To investigate the role of CREB-dependent gene expression in neuronal plasticity and survival in vivo, we generated bitransgenic mice expressing A-CREB, an artificial peptide with strong and broad inhibitory effect on the CREB family, in forebrain neurons in a regulatable manner. The expression of ACREB in hippocampal neurons impaired L-LTP, reduced intrinsic excitability and the susceptibility to induced seizures, and altered both basal and activity-driven gene expression. In the long-term, the chronic inhibition of CREB function caused severe loss of neurons in the CA1 subfield as well as in other brain regions. Our experiments confirmed previous findings in CREB deficient mutants and revealed new aspects of CREB-dependent gene expression in the hippocampus supporting a dual role for CREB-dependent gene expression regulating intrinsic and synaptic plasticity and promoting neuronal survival. manufacturer's protocol.

Publication Title

Inhibition of cAMP response element-binding protein reduces neuronal excitability and plasticity, and triggers neurodegeneration.

Alternate Accession IDs

E-GEOD-14320

Sample Metadata Fields

Age, Treatment

View Samples
accession-icon SRP110478
mRNA sequencing of wild type Columbia and serrate-1 globular stage embryos of Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Wild type Columbia and serrate-1 globular stage embryos were sequenced in order to profile miRNAs which are expressed in embryogenesis in Arabidopsis thaliana Overall design: Two biological replicates, two conditions

Publication Title

Arabidopsis thaliana miRNAs promote embryo pattern formation beginning in the zygote.

Alternate Accession IDs

GSE100450

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP015689
A user-friendly chromatographic method to purify small regulatory RNAs
  • organism-icon Drosophila melanogaster
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx, Illumina HiSeq 2000

Description

The discovery of the small regulatory RNA populations has changed our vision of cellular regulations. Indeed, loaded on Argonaute proteins they formed ribonucleoprotein complexes that target complementary sequences and achieved widespread silencing mechanisms conserved in most eukaryotes. The recent development of deep sequencing approaches highly contributed to their detection. Small RNA isolation form cells and/or tissues remains a crucial stage to generate robust and relevant sequencing data. In 2006, a novel strategy based on anion-exchange chromatography has been purposed as an alternative to the standard size-isolation purification procedure. However, the eventual biases of such a method have been poorly investigated. Moreover, this strategy not only relies on advanced technical skills and expensive material but is time consuming and requires an elevated starting biological material amount. Using bioinformatic comparative analysis of six independent small RNA-sequencing libraries of Drosophila ovaries, we here demonstrate that anion-exchange chromatography purification prior to small RNA extraction unbiasedly enriches datasets in bona fide reads (small regulatory RNA reads) and depletes endogenous contaminants (ribosomal RNAs and degradation products). The resulting increase of sequencing depth provides a major benefit to study rare populations. We then developed a fast and basic manual procedure to purify loaded small non coding RNAs using anion-exchange chromatography at the bench. We validated the efficiency of this new method and used this strategy to purify small RNAs from various tissues and organisms. We moreover determined that our manual purification increases the output of the previously described anion-exchange chromatography procedure. Overall design: Comparison of small regulatory RNA populations obtained after three different small RNA purification procedures

Publication Title

A user-friendly chromatographic method to purify small regulatory RNAs.

Alternate Accession IDs

GSE40748

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP009871
piRNA-mediated transgenerational inheritance of an acquired trait
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Illumina Genome Analyzer II

Description

The maintenance of genome integrity is an essential trait to the successful transmission of genetic information. In animal germ cells, piRNAs guide PIWI proteins to silence transposable elements (TEs) in order to maintain genome integrity. In insects, most of TE silencing in the germline is achieved by secondary piRNAs that are produced by a feed-forward loop (the ping-pong cycle), which requires the piRNA-directed cleavages of two types of RNAs: mRNAs of functional euchromatic TEs and heterochromatic transcripts that contain defective TE sequences. The first cleavage which initiates such amplification loop remains poorly understood. Taking advantage of the existence of strains that are devoid of functional copies of the LINE-like I-element, we report that in such Drosophila ovaries, the initiation of a ping-pong cycle is achieved only by secondary I-element piRNAs that are produced in the ovary and deposited in the embryonic germline. This unusual secondary piRNA biogenesis, detected in the absence of functional I-element copies, results from the processing of sense and antisense transcripts of several different defective I-elements. Once acquired, for instance after ancestor aging, this capacity to produce heterochromatic-only secondary piRNAs is partially transmitted through generations via maternal piRNAs. Furthermore, such piRNAs acting as ping-pong initiators in a chromatin-independent manner confer to the progeny a high capacity to repress the I-element mobility. Our study explains at the molecular level the basis for epigenetic memory of maternal immunity that protects females from hybrid dysgenesis caused by transposition of paternally inherited functional I-elements. Overall design: Comparison of Drosophila small RNA populations in ovaries and/or eggs from 3-day-old or 25-day-old females.

Publication Title

piRNA-mediated transgenerational inheritance of an acquired trait.

Alternate Accession IDs

GSE34506

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP111371
Whole transcriptome analysis reveals a pro-inflammatory profile of ductular reaction cells in AH.
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

Objective: Alcoholic hepatitis (AH) is characterized by the expansion of ductular reaction (DR) cells and expression of liver progenitor cell (LPC) markers. The aim of this study was to identify the gene expression profile and associated genes of DR cells and to evaluate its weight in alcoholic disease progression. Design: KRT7+, KRT7- and total liver fractions were laser microdissected from liver biopsies (n=6) of patients with AH and whole transcriptome was sequenced. Gene signature was assessed in transcriptomic data from 41 patients with alcoholic liver disease. Pro-inflammatory profile was evaluated in tissue and serum samples and in human LPC organoids. Results: Transcriptome analysis of KRT7+ DR cells uncovered intrinsic gene pathways of DR and allowed identifying genes associated with DR expressed in AH. In addition, DR gene signature and associated genes correlated with disease progression and poor outcome in AH patients. Importantly, DR presented a pro-inflammatory profile with expression of CXC and CCL chemokines and was associated with infiltrating neutrophils. Moreover, LPC markers correlated with liver expression and circulating levels of inflammatory mediators. In vitro, human LPC organoids mimicked ductular reaction gene expression profile and produced chemokines. Moreover, LPC promoted neutrophil migration and enhanced their inflammatory profile. Conclusions: Here we report for the first time the gene expression signature of DR in AH and its association with disease progression. Functional and experimental analysis demonstrates that DR cells have a pro-inflammatory profile, and suggest their involvement in neutrophil recruitment and liver inflammatory response.

Publication Title

Ductular Reaction Cells Display an Inflammatory Profile and Recruit Neutrophils in Alcoholic Hepatitis.

Alternate Accession IDs

None

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Cell line, Treatment, Race

View Samples
accession-icon GSE100901
Whole transcriptome analysis reveals a pro-inflammatory profile of ductular reaction cells in AH.
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Objective: Alcoholic hepatitis (AH) is characterized by the expansion of ductular reaction (DR) cells and expression of liver progenitor cell (LPC) markers. The aim of this study was to identify the gene expression profile and associated genes of DR cells and to evaluate its weight in alcoholic disease progression. Design: KRT7+, KRT7- and total liver fractions were laser microdissected from liver biopsies (n=6) of patients with AH and whole transcriptome was sequenced. Gene signature was assessed in transcriptomic data from 41 patients with alcoholic liver disease. Pro-inflammatory profile was evaluated in tissue and serum samples and in human LPC organoids. Results: Transcriptome analysis of KRT7+ DR cells uncovered intrinsic gene pathways of DR and allowed identifying genes associated with DR expressed in AH. In addition, DR gene signature and associated genes correlated with disease progression and poor outcome in AH patients. Importantly, DR presented a pro-inflammatory profile with expression of CXC and CCL chemokines and was associated with infiltrating neutrophils. Moreover, LPC markers correlated with liver expression and circulating levels of inflammatory mediators. In vitro, human LPC organoids mimicked ductular reaction gene expression profile and produced chemokines. Moreover, LPC promoted neutrophil migration and enhanced their inflammatory profile. Conclusions: Here we report for the first time the gene expression signature of DR in AH and its association with disease progression. Functional and experimental analysis demonstrates that DR cells have a pro-inflammatory profile, and suggest their involvement in neutrophil recruitment and liver inflammatory response.

Publication Title

Ductular Reaction Cells Display an Inflammatory Profile and Recruit Neutrophils in Alcoholic Hepatitis.

Alternate Accession IDs

E-GEOD-100901

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE36674
Expression data for mouse hypothalamus
  • organism-icon Mus musculus
  • sample-icon 89 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Strain differences in gene expression in the hypothalamus of BXD recombinant inbred mice

Publication Title

Sex-specific modulation of gene expression networks in murine hypothalamus.

Alternate Accession IDs

E-GEOD-36674

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP153417
Gene expression changes in THP1 cells at day 2 and 4 following shRNA knock-down of RUVBL2
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We used an inducible shRNA system and RNA-Seq to examine gene expression changes in acute myeloid leukemia THP1 cells following silencing of RUVBL2. RUVBL2 is a AAA+ ATPase that functions in a number of cellular processes, including chromatin remodeling and transcriptional control, and is critical for survival of acute myeloid leukemia cells and in vivo disease progression. Overall design: Total cellular RNA was extracted using the RNeasy Plus Mini Kit from THP1 cells transduced with RUVBL2-specific inducible shRNA, following 2 and 4 days exposure to doxycycline or medium controls. In total, 6 pairs of control and doxycycline-treated samples were analysed (3 control and 3 doxycycline-treated for each time-point).

Publication Title

The AAA+ATPase RUVBL2 is essential for the oncogenic function of c-MYB in acute myeloid leukemia.

Alternate Accession IDs

GSE117106

Sample Metadata Fields

Specimen part, Cell line, Subject, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0