Coat color mainly reflects pigmentation resulting from melanin. Wool color is one of the most visible and heritable traits in sheep. Although several detailed molecular mechanisms involved in coat color have been elucidated, our understanding of differences in gene expression patterns of wool color-related genes in Chinese Merino (Junken type) is limited. We employed the Affymetrix microarray to identify differentially expressed genes. 122 genes were differentially expressed, consisting of 117 upregulated and 5 downregulated genes that were related to black/brown skin. The expression level of the BMP2, BMP4, TYRP1, LEPR, DCT, BMPR1A, and TP45A genes was validated by qRT-PCR, and the results coincided with those of microarray. The expression level of ASIP in the black/brown group was significantly lower than that of the white group, suggesting that this plays a key role in the regulation of wool pigmentation. Some cloned color genes (MITF, MC1R, GPR143, and KIT) showed no significant differences in expression levels between the black/brown- and white-skinned sheep. Functional annotation by using Gene Ontology (GO) showed that the differentially expressed genes enriched specific GO terms, particularly those relating to melanin biosynthesis and metabolic processes. KEGG pathway analysis indicated that the categories of tyrosine metabolism and melanogenesis pathway were enriched with differentially expressed genes. Taken together, the present study has shown that the tyrosine metabolism pathway plays an essential role in regulating wool color. The findings of this study may also be utilized in the elucidation of the molecular mechanisms and relationship between genes and wool color in Chinese Merino (Junken type).
No associated publication
Specimen part
View SamplesRoot foraging strategy of wheat for potassium (K) heterogeneity is based on special gene expressions. Low-K responsive genes, such as peroxidases, mitochondrion, transcription factor activity, calcium ion binding and respiration, up-regulated in Sp. NK rather than in Sp. LK. Methyltransferase activity, protein amino acid phosphorylation, potassium ion transport, protein kinase activity genes were found among down-regulated genes in Sp. LK.
Potential Root Foraging Strategy of Wheat (<i>Triticum aestivum</i> L.) for Potassium Heterogeneity.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Coordinated regulation of hepatic and adipose tissue transcriptomes by the oral administration of an amino acid mixture simulating the larval saliva of Vespa species.
Sex, Specimen part
View SamplesTo study the development mechanisms of type 2 diabetes, we examined multi-tissues' expression profiles of outbred mice fed with a high-fat diet (HFD) or regular chow at week 1, 9, and 18 and performed a novel dual eigen-analysis.
A Novel Dual Eigen-Analysis of Mouse Multi-Tissues' Expression Profiles Unveils New Perspectives into Type 2 Diabetes.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Quantitative deviating effects of maple syrup extract supplementation on the hepatic gene expression of mice fed a high-fat diet.
Sex, Specimen part
View SamplesVAAM stands for an amino acid mixture simulating the composition of Vespa, a hornet larval saliva. We conducted a comparative study on metabolism-regulatory roles of VAAM, casein-simulating amino acid mixture (CAAM), and pure water on murine hepatic and adipose tissue transcriptomes. Mice were orally fed VAAM solution ( 0.675 g/ kg BW = 2% of food-derived amino acids = 0.38% of total food energy/ day), CAAM solution ( 0.675 g / kg BW/ day) or water under ad libitum for five days. Hepatic transcriptome comparison of VAAM, CAAM and water-treated groups revealed a VAAM-specific regulation of the metabolic pathway, i.e., the down-regulation of glycolysis and fatty acid oxidation, and up-regulation of poly unsaturated fatty acid synthesis and glycogenic amino acids utilization in TCA cycle. Similar transcriptomic analysis of white and brown adipose tissues (WAT and BAT) suggested the up-regulation of phospholipid synthesis in WAT and the negative regulation of cellular processes in BAT. Because these coordinated regulations of tissue transcriptomes implicated the presence of upstream signaling common to these tissues, we conducted Ingenuity Pathways Analysis of these transcriptomes with the results that estrogenic and glucagon signals seemed to be activated in liver and WAT as well as beta-adrenergic signaling did in the three tissues by administration of VAAM. Our data provide a clue to understanding the role of VAAM in metabolic regulation of multiple tissues.
Coordinated regulation of hepatic and adipose tissue transcriptomes by the oral administration of an amino acid mixture simulating the larval saliva of Vespa species.
Sex, Specimen part
View SamplesVAAM stands for an amino acid mixture simulating the composition of Vespa, a hornet larval saliva. We conducted a comparative study on metabolism-regulatory roles of VAAM, casein-simulating amino acid mixture (CAAM), and pure water on murine hepatic and adipose tissue transcriptomes. Mice were orally fed VAAM solution ( 0.675 g/ kg BW = 2% of food-derived amino acids = 0.38% of total food energy/ day), CAAM solution ( 0.675 g / kg BW/ day) or water under ad libitum for five days. Hepatic transcriptome comparison of VAAM, CAAM and water-treated groups revealed a VAAM-specific regulation of the metabolic pathway, i.e., the down-regulation of glycolysis and fatty acid oxidation, and up-regulation of poly unsaturated fatty acid synthesis and glycogenic amino acids utilization in TCA cycle. Similar transcriptomic analysis of white and brown adipose tissues (WAT and BAT) suggested the up-regulation of phospholipid synthesis in WAT and the negative regulation of cellular processes in BAT. Because these coordinated regulations of tissue transcriptomes implicated the presence of upstream signaling common to these tissues, we conducted Ingenuity Pathways Analysis of these transcriptomes with the results that estrogenic and glucagon signals seemed to be activated in liver and WAT as well as beta-adrenergic signaling did in the three tissues by administration of VAAM. Our data provide a clue to understanding the role of VAAM in metabolic regulation of multiple tissues.
Coordinated regulation of hepatic and adipose tissue transcriptomes by the oral administration of an amino acid mixture simulating the larval saliva of Vespa species.
Sex, Specimen part
View SamplesTo elucidate the effect of the polyphenols contained in alcoholic beverages on the metabolic stress induced by ethanol consumption, four groups of mice were fed for five weeks on Lieber's diet with or without ethanol, with ethanol plus ellagic acid, and with ethanol plus trans-resveratrol. Alcoholic fatty liver was observed in the group fed the ethanol diet but not in those fed the ethanol plus polyphenol diets. Liver transcriptome analysis revealed that the addition of the polyphenols suppressed the expression of the genes related to cell stress that were up-regulated by ethanol alone. Conversely, the polyphenols up-regulated the genes involved in bile acid synthesis, unsaturated fatty acid elongation, and tetrahydrofolate synthesis that were down-regulated by ethanol alone. Because parts of these genes were known to be regulated by the constitutive androstane receptor (CAR), we performed the same experiment in the CAR-deficient mice. As a result, fatty liver was observed not only in the ethanol group but also with the ethanol plus polyphenol groups. In addition, there was no segregation of the gene expression profiles among these groups. These results provide a molecular basis for the prevention of alcohol-induced stress by the polyphenols in alcoholic beverages.
Nuclear receptor-mediated alleviation of alcoholic fatty liver by polyphenols contained in alcoholic beverages.
Sex, Specimen part
View SamplesThe effects of the administration of maple syrup extract (MSX) on hepatic gene expression were investigated in mice fed high-fat diet.
No associated publication
Sex, Specimen part
View SamplesThe effects of the administration of maple syrup extract (MSXH) on hepatic gene expression were investigated in mice fed high-fat diet.
Quantitative deviating effects of maple syrup extract supplementation on the hepatic gene expression of mice fed a high-fat diet.
Sex, Specimen part
View Samples