refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 15280 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE18322
Gene Expression Analysis of Ara-C Resistance in AML
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Using two independently derived murine BXH2 cell lines, Ara-C resistant derivatives were developed by exposure to increasing concentrations of Ara-C. Microarray analysis comparing the Ara-C resistant cells to their Ara-C sensitive parental cell lines identified potential genes involved in Ara-C resistance.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-18322

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE108649
Transcriptomic Predictors of Paradoxical Cryptococcosis-Associated Immune Reconstitution Inflammatory Syndrome
  • organism-icon Homo sapiens
  • sample-icon 162 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Paradoxical cryptococcosis-associated immune reconstitution inflammatory syndrome

Publication Title

Transcriptomic Predictors of Paradoxical Cryptococcosis-Associated Immune Reconstitution Inflammatory Syndrome.

Alternate Accession IDs

E-GEOD-108649

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE6095
Diagnosis of Acute Lung Rejection by Gene Expression Profiling of Bronchoalveolar Lavage Cells
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 66 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a), Affymetrix Human Genome U133A Array (hgu133a)

Description

Acute lung rejection is a risk factor for chronic rejection, jeopardizing the long-term survival of lung transplant recipients. At present, acute rejection is diagnosed by transbronchial lung biopsies, which are invasive, expensive, and subject to significant sampling error. In this study, we sought to identify groups of genes whose collective expression in BAL cells best classifies acute rejection versus no-rejection. BAL samples were analyzed from 32 unique subjects whose concurrent histology showed acute rejection (n=14) or no rejection (n=18). Global BAL cell gene expression was measured using Affymetrix U133A microarrays. The nearest shrunken centroid method with 10-fold cross validation was used to define the classification model. 250 runs of the algorithm were performed to determine the range of misclassification error and the most influential genes in determining classifiers. The estimated overall misclassification rate was below 20%. Seven transcripts were present in every classifier and 52 transcripts were present in at least 70% of classifiers; these transcripts were notable for involvement with T-cell function, cytotoxic CD8 activity, and granulocyte degranulation. The proportions of both lymphocytes and neutrophils in BAL samples increased with increasing probability of acute rejection; this trend was more pronounced with neutrophils. We conclude that there is a prominent acute rejection-associated signature in BAL cells characterized by increased T-cell, CD8+ cytotoxic cell, and neutrophil gene expression; this is consistent with established mechanistic concepts of the acute rejection response.

Publication Title

Bronchoalveolar lavage cell gene expression in acute lung rejection: development of a diagnostic classifier.

Alternate Accession IDs

E-GEOD-6095

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE94363
Posttranslationally modified progesterone receptors direct ligand-specific expression of breast cancer stem cell-associated gene programs
  • organism-icon Homo sapiens
  • sample-icon 84 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Background

Publication Title

Posttranslationally modified progesterone receptors direct ligand-specific expression of breast cancer stem cell-associated gene programs.

Alternate Accession IDs

E-GEOD-94363

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE76096
CFTR is a tumor suppressor gene in murine and human intestinal cancer
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

CFTR is a tumor suppressor gene in murine and human intestinal cancer.

Alternate Accession IDs

E-GEOD-76096

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE49089
NRASG12V oncogene mediates self-renewal in acute myelogenous leukemia
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

NRASG12V oncogene facilitates self-renewal in a murine model of acute myelogenous leukemia.

Alternate Accession IDs

E-GEOD-49089

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21598
Identification of differentially expressed genes between developing seeds of different soybean cultivars
  • organism-icon Glycine max
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon Affymetrix Soybean Genome Array (soybean)

Description

Soybean is a rich source of protein and oil and a primary feedstock for biodiesel production. Previous research on soybean indicated that protein, oil and yield are controlled quantitatively in soybean seeds. However, genetic mechanisms controlling seed composition and yield in soybean remain unknown. We used Affymetrix Soybean GeneChips to identify genes that are differentially expressed between developing seeds of the Minsoy and Archer soybean varieties, which differ in seed weight, yield, protein content and oil content. Some of the differentially expressed genes identified in this study may play important roles in controlling these traits.

Publication Title

Identification of differentially expressed genes between developing seeds of different soybean cultivars.

Alternate Accession IDs

E-GEOD-21598

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16363
Microarray Analysis of Lymphatic Tissue Reveals Stage-Specific, Gene-Expression Signatures in HIV-1 Infection
  • organism-icon Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Untreated HIV-1 infection progresses through acute and asymptomatic stages to AIDS. While each of the three stages has well-known clinical, virologic and immunological characteristics, much less is known of the molecular mechanisms underlying each stage. Here we report lymphatic tissue microarray analyses revealing for the first time stage-specific patterns of gene expression during HIV-1 infection. We show that while there is a common set of key genes with altered expression throughout all stages, each stage has a unique gene-expression signature. The acute stage is most notably characterized by increased expression of hundreds of genes involved in immune activation, innate immune defenses (e.g.MDA-5, TLR-7 and -8, PKR, APOBEC3B, 3F, 3G), adaptive immunity, and in the pro-apoptotic Fas-Fas-L pathway. Yet, quite strikingly, the expression of nearly all acute-stage genes return to baseline levels in the asymptomatic stage, accompanying partial control of infection. In the AIDS stage, decreased expression of numerous genes involved in T cell signaling identifies genes contributing to T cell dysfunction. These common and stage-specific, gene-expression signatures provide new insights into the molecular mechanisms underlying the host response and the slow, natural course of HIV-1 infection.

Publication Title

Microarray analysis of lymphatic tissue reveals stage-specific, gene expression signatures in HIV-1 infection.

Alternate Accession IDs

E-GEOD-16363

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Race, Subject

View Samples
accession-icon GSE10627
Mll-AF9 induced changes in gene expression in various hematopoietic cells
  • organism-icon Mus musculus
  • sample-icon 50 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The pathways by which oncogenes, such as MLL-AF9, initiate transformation and leukemia in humans and mice are incompletely defined. In a study of target cells and oncogene dosage, we found that Mll-AF9, when under endogenous regulatory control, efficiently transformed LSK (Lin- Sca1+ c-kit+) stem cells while committed granulocyte-monocyte progenitors (GMPs) were transformation-resistant and did not cause leukemia. Mll-AF9 was expressed at higher levels in hematopoietic stem (HSC) than GMP cells. Mll- AF9 gene dosage effects were directly shown in experiments where GMPs were efficiently transformed by the high dosage of Mll-AF9 resulting from retroviral transduction. Mll-AF9 up-regulated expression of 196 genes in both LSK and progenitor cells, but to higher levels in LSKs than in committed myeloid progenitors.

Publication Title

Malignant transformation initiated by Mll-AF9: gene dosage and critical target cells.

Alternate Accession IDs

E-GEOD-10627

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41930
Genome-wide analysis of gene expression in response to bortezomib treatment
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 44 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Profiling bortezomib resistance identifies secondary therapies in a mouse myeloma model.

Alternate Accession IDs

E-GEOD-41930

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0