Anthocyanin induction in plant is considered a general defense response against biotic and abiotic stresses. The infection by Ustilago maydis, the corn smut pathogen, is accompanied with anthocyanin induction in leaf tissue. We revealed that anthocyanin is intentionally induced by the virulence promoting secreted effector protein Tin2. Tin2 protein functions inside plant cells where it interacts with cytoplasmic maize protein kinase ZmTTK1. Tin2 masks an ubiquitin-proteasome degradation motif in ZmTTK1 leading to a more stable active kinase. Active ZmTTK1 controls transcriptional activation of genes in the anthocyanin biosynthesis pathway rerouting phenylalanine away from lignin biosynthesis.
A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize.
Specimen part
View SamplesEarly embryo RNA-seq sequencing
No associated publication
None
Sex, Specimen part
View SamplesTest effects of mtDNA variation on nuclear transcript expression using various mtDNA haplotypes on isogenic nuclear backgrounds
No associated publication
None
Sex, Age, Specimen part, Cell line
View SamplesMitonuclear transcriptomics
No associated publication
None
Sex, Age, Specimen part, Cell line, Treatment
View SamplesPseudomonas fluorescens strain SS101 (Pf.SS101) promotes growth of Arabidopsis thaliana, enhances greening and lateral root formation, and induces systemic resistance (ISR) against the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Here, targeted and untargeted approaches were adopted to identify bacterial determinants and underlying mechanisms involved in plant growth promotion and ISR by Pf.SS101. Based on targeted analyses, no evidence was found for volatiles, lipopeptides and siderophores in plant growth promotion by Pf.SS101. Untargeted, genome-wide analyses of 7,488 random transposon mutants of Pf.SS101 led to the identification of 21 mutants defective in both plant growth promotion and ISR. Many of these mutants, however, were auxotrophic and impaired in root colonization. Genetic analysis of three mutants followed by site-directed mutagenesis, genetic complementation and plant bioassays revealed the involvement of the phosphogluconate dehydratase gene edd, the response regulator gene colR and the adenylsulfate reductase gene cysH in both plant growth promotion and ISR. Subsequent comparative plant transcriptomics analyses strongly suggest that modulation of sulfur assimilation, auxin biosynthesis and transport, steroid biosynthesis and carbohydrate metabolism in Arabidopsis are key mechanisms linked to growth promotion and ISR by Pf.SS101.
Genome-wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by Pseudomonas fluorescens.
Specimen part, Treatment
View SamplesThe aim of this study was to analyze potential brown planthopper (BPH) resistant genes in Rathu Heenati (RHT) by Affymetrix whole rice genome array,BPH susceptible and resistant rice varieties of TN1Taichung Native 1as control. All the resistant related genes derived from RHT will be analyzed according to the SSR markers interval flanked on the chromosome 3, 4, 6 and 10. It will be benefit to the gene clone and marker assistant breeding for Bph3 gene in the near future.
Microarray analysis of broad-spectrum resistance derived from an indica cultivar Rathu Heenati.
Specimen part, Time
View SamplesGlobal warming seriously threats world food supply. However, very few approaches have succeeded in genetically enhancing crop heat tolerance without growth penalty.
No associated publication
Age, Specimen part
View SamplesTo reveal the underlying molecular mechanism of GH3.5 action in modulating the SA and auxin pathways, we performed transcriptional profiling of gh3.5-1D plants after infection with or without Pst DC3000(avrRpt2) on a global scale using the Affymetrix Arabidopsis ATH1 GeneChip
Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction.
No sample metadata fields
View SamplesTo reveal the underlying molecular mechanism of Gif1 action in the control of grain filling and yield improvement, we performed transcriptional profiling of wild type Zhonghua11 and mutant gif1 plants in early filling stage on a global scale using the Affymetrix GeneChip Rice Genome Array
Control of rice grain-filling and yield by a gene with a potential signature of domestication.
No sample metadata fields
View SamplesDrought and salinity are two main abiotic-stresses negatively affecting crop growth and productivity worldwide with largely decreasing crop yields. The understanding of plant responses to stresses in physiology, genetics, and molecular biology will be greatly helpful to improve the tolerance of crops to abiotic-stresses through genetic engineering.To identify the genetic loci that control drought and salt tolerance in rice, we performed a large-scale screen for the mutants with altered drought and salt tolerance. A drought and salt tolerance (dst) mutant line was isolated.In this series, we compare the transcriptome of wild-type plant Zhonghua11 and dst mutants under the normal growth conditions.
A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control.
Age
View Samples