refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3647 results
Sort by

Filters

Organism

Technology

Platform

accession-icon SRP137071
Time series integrative analysis of RNA-Seq and miRNA expression data reveals key biologic pathways during keloid formation
  • organism-icon Homo sapiens
  • sample-icon 54 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 3000, Illumina HiSeq 2500

Description

Keloids represent a common form of exaggerated wound scarring that cause considerable morbidity. Moreover, there are limited data on molecular mechanisms underlying keloids and effective therapies are lacking. To gain new insight in the transcriptomic alterations of wound healing in keloid-prone individuals, we followed an integrative approach of RNA-Seq and miRNA expression data analysis in serial skin biopsies of the same site (baseline and six weeks after wounding) in keloid-prone (n=8) and healthy matched control individuals (n=6). Bioinformatic analysis identified 37 miRNAs and 1449 genes that are differentially expressed specifically in keloid-prone individuals during wound healing. Pathway enrichment analysis was undertaken in the RNA-Seq data and identified NOTCH signaling, MAPK signaling, and Toll-like receptor pathways to be altered in keloid-prone individuals after wounding. In addition, dysregulation of DNA repair, p53 signalling and metabolic pathways (RNA, protein, fructose, mannose and glycerophospholipid metabolism) was highlighted during keloid formation. Gene association network analysis demonstrated divergent average expression profiles of cytokine signaling genes, as well as lipid metabolism genes between keloid-prone and healthy individuals during wound healing. In summary, our study provides a comprehensive and integrative analysis of the keloid transcriptome and miRNAome and highlights biological pathways that feature during keloid formation.

Publication Title

No associated publication

Alternate Accession IDs

None

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Treatment

View Samples
accession-icon GSE117070
The Heritage family study - skeletal muscle gene expression
  • organism-icon Homo sapiens
  • sample-icon 79 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression profiles generated from skeletal muscle biopsies taken from participants of the HERITAGE family study. Participants completed an endurance training regime in which a skeletal muscle biopsy was taken prior to the start and after the final session of the program. Biopsies were used to generate Affymetrix gene expression microarrays.

Publication Title

The Role of Eif6 in Skeletal Muscle Homeostasis Revealed by Endurance Training Co-expression Networks.

Alternate Accession IDs

E-GEOD-117070

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19002
Microarray analysis of defective cartilage in Hoxc8- and Hoxd4-transgenic mice
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-19002

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE36974
Genotype modulates gene expression profiles in the uterus in response to preconceptual folate supplementation.
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Periconceptual supplementation of women with folate is considered a great success for public health. Higher folate status, either by supplementation, or via the mandatory fortification of grain products in the United States, has lead to significant reduction in the incidence of neural tube defects. Besides birth defects, folate deficiency has been linked to a variety of morbidities, most notably to increased risk for cancer. However, recent evidence suggests that excess folate may be detrimental - for birth defect incidence or in the progression of cancer. How folate mediates beneficial or detrimental effects is not well understood. It is also unknown what molecular responses are elicited in women taking folate supplements, and thus experience a bolus of folate on top of the status achieved by fortification. To characterize this response, we performed gene expression profiling experiments on uterus tissue of pregnant mice after a preconceptional regimen of supplementation with folinic acid. We suggest that folinic acid supplementation affects expression of genes that contribute to protein synthesis and localization, genes that play a role for mitochondrial biology and oxidative phosphorylation, and genes encoding nucleotide-binding proteins, including protein kinases and GTP-binding intracellular signaling factors. The extent of such a response is strongly modulated by the genetic background. Finally, we suggest that folinic acid supplementation in this paradigm may affect histone methylation status, a potential avenue to mechanisms of gene regulation.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-36974

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61839
The Ubiquitin Ligase Siah2 Regulates Obesity-induced Adipose Tissue Inflammation
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Chronic, low-grade adipose tissue inflammation associated with adipocyte hypertrophy is an important link in the relationship between obesity and insulin resistance. Although ubiquitin ligases are essential regulators of inflammatory processes, the role of these enzymes in metabolically driven adipose tissue inflammation is relatively unexplored. In this study, we found that the ubiquitin ligase Siah2 is a central factor in obesity-related adipose tissue inflammation. When challenged with chronic excess energy intake, Siah2-null mice become obese with enlarged adipocytes, but do not develop obesity-induced insulin resistance. Proinflammatory gene expression is substantially reduced in the Siah2-null epididymal adipose tissue of the obese Siah2KO mice.

Publication Title

The ubiquitin ligase Siah2 regulates obesity-induced adipose tissue inflammation.

Alternate Accession IDs

E-GEOD-61839

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE28277
Altered Gene Expression in Placentae from a Mouse Model of Diabetic Pregnancy
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

AIMS/HYPOTHESIS: Pregnancies complicated by diabetes have a higher risk of adverse outcomes for mothers and children, including predisposition to disease later in life, such as metabolic syndrome and hypertension. We hypothesized that adverse outcomes from diabetic pregnancies may be linked to compromised placental function. Our goal in this study was to identify cellular and molecular abnormalities in diabetic placenta.

Publication Title

Altered gene expression and spongiotrophoblast differentiation in placenta from a mouse model of diabetes in pregnancy.

Alternate Accession IDs

E-GEOD-28277

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE18991
Overexpression of Hoxd4 transcription factor alters transcriptional profiles in mouse chondrocytes at E18.5
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Homeobox genes of the Hox class are required for proper patterning of skeletal elements and play a role in cartilage differentiation. In transgenic mice with overexpression of Hoxd4 during cartilage development, we observed severe defects, namely physical instability of cartilage, accumulation of immature chondrocytes, and decreased maturation to hypertrophy. To define the molecular basis underlying these defects, we performed gene expression profiling using the Affymetrix microarray platform.

Publication Title

Microarray Analysis of Defective Cartilage in Hoxc8- and Hoxd4-Transgenic Mice.

Alternate Accession IDs

E-GEOD-18991

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18992
Overexpression of Hoxc8 transcription factor alters transcriptional profiles in mouse chondrocytes at E18.5
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Homeobox genes of the Hox class are required for proper patterning of skeletal elements and play a role in cartilage differentiation. In transgenic mice with overexpression of Hoxc8 during cartilage development, we observed severe defects, namely physical instability of cartilage, accumulation of immature chondrocytes, and decreased maturation to hypertrophy. To define the molecular basis underlying these defects, we performed gene expression profiling using the Affymetrix microarray platform.

Publication Title

Microarray Analysis of Defective Cartilage in Hoxc8- and Hoxd4-Transgenic Mice.

Alternate Accession IDs

E-GEOD-18992

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9675
Maternal Diabetes alters Transcriptional Programs in the Developing Embryo
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Diabetic embryopathy can affect any developing organ system, although cardiovascular malformations, neural tube defects and caudal dysgenesis syndrome are the most prominent congenital malformations. We hypothesize that the metabolic imbalance occurring in diabetic pregnancy de-regulates tissue specific gene expression programs in the developing embryo. In order to identify genes whose expression is affected by maternal diabetes, we analyzed gene expression profiles of diabetes-exposed mouse embryos by using Affymetrix microarrays. We identified 129 genes with altered expression levels; 21 genes had increased and 108 genes had decreased expression levels in diabetes-exposed embryos relative to controls. A substantial fraction of these genes (35) are essential for normal embryonic development as shown by functional studies in mouse models. The largest fraction of diabetes-affected genes was in transcription factor and DNA-binding/chromatin remodeling functional categories (19%), which directly affect transcription. These findings suggest that transcriptional regulation in the developing embryos is perturbed by maternal diabetes and that transcriptional regulation plays a major role in the responses of embryos to intrauterine exposure to diabetic conditions. Interestingly, we found the expression of hypoxia-inducible factor 1 (Hif1) deregulated in the embryos exposed to the conditions of maternal diabetes. Since hypoxic stress is associated with the complications of diabetic pregnancy, we performed a post-hoc analysis of our microarray data with a specific focus on known HIF1 target genes. Of 39 genes detected in our microarrays, the expression changes of 22 genes (20 were increased and two genes were decreased in diabetes-exposed embryos) were statistically significant. These results indicate that HIF1-regulated pathways are affected in diabetes-exposed embryos. These results strongly suggest that de-regulation of hypoxia/HIF1 activated pathways could be the one of the key molecular events associated with the exposure to the teratogenic intrauterine environment of a diabetic mother.

Publication Title

Maternal diabetes alters transcriptional programs in the developing embryo.

Alternate Accession IDs

E-GEOD-9675

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41095
Maternal diabetes alters transcriptional programs in the developing embryo.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Exposure to maternal diabetes during pregnancy alters transcriptional profiles in the developing embryo. The enrichment, within the set of de-regulated genes, of those encoding transcriptional regulatory molecules provides support for the hypothesis that maternal diabetes affects specific developmental programs.

Publication Title

Maternal diabetes alters transcriptional programs in the developing embryo.

Alternate Accession IDs

E-GEOD-41095

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0