refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 222 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE26499
Lineage-committed osteoclast precursors circulate in blood and settle down into bone
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Osteoclasts are derived from the monocyte/macrophage lineage, but little is known about osteoclast precursors in circulation. Bone marrow cells were subdivided into three populations; RANKhighFmslow, RANKhighFmshigh and RANKlowFmshigh. GeneChip analysis confirmed that the expression levels of monocyte-macrophage markers such as Emr1 (F4/80), Itgam (CD11b) and Csf1 (c-Fms) were lower in the RANKhighFmslow than RANKlowFmshigh population. In contrast, cells in the RANKhighFmslow population expressed higher levels of osteoclast markers such as Car ll (carbonic anhydrase ll), Mmp9 (matrix metalloproteinase 9), Acp5 (acid phosphatase 5) and Tfrc (transferrin receptor). These results suggest that RANKhighFmslow cells express few of the phenotypes of monocytes, and their differentiation into osteoclasts occurs at a slightly more advanced stage than that of the RANKlowFmshigh population.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-26499

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE22877
Retinal pigment epithelial cells suppress interleukin-17-producing T-helper 17 cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

T cells that encounter cultured ocular pigment epithelial cells in vitro are inhibited from undergoing T cell receptor-triggered activation. Because retinal pigment epithelial (RPE) cells are able to suppress T-cell activation, we studied whether RPE cells could suppress cytokine production by activated T helper (Th) cells. In this study we showed that primary cultured RPE cells greatly suppressed activation of bystander CD4+ T cells in vitro, especially the cytokine production by the target T helper cells (Th1 cells, Th2 cells, Th17 cells, but not Th3 cells). Cultured RPE cells and RPE-supernatants significantly suppressed IL-17 producing CD4+ T cells, and RPE cells fully suppressed polarized Th17 cell lines that induced by recombinant proteins, IL-6 and TGFb2. Moreover, RPE cells failed to suppress IL-17 producing T cells in the presence of rIL-6. In addition, Th17 cells exposed to RPE were suppressed via TGFb, which produce RPE cells. These results indicate that retinal PE cells have immunosuppressive capacity in order to inhibit Th17-type effector T cells. Thus, ocular resident cells play a role in establishing immune regulation in the eye.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-22877

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE35603
Network Biology of Tumor Stem-like Cells Identified a Regulatory Role of CBX5 in Lung Cancer
  • organism-icon Homo sapiens
  • sample-icon 74 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Mounting evidence points to a link between a cancer possessing stem-like properties and a worse prognosis. To understand the biology, a common approach is to integrate network biology with signal processing mechanics. That said, even with the right tools, predicting the risk for a highly susceptible target using only a handful of gene signatures remains very difficult. By compiling the expression profiles of a panel of tumor stem-like cells (TSLCs) originating in different tissues, comparing these to their parental tumor cells (PTCs) and the human embryonic stem cells (hESCs), and integrating network analysis with signaling mechanics, we propose that network topologically-weighted signaling processing measurements under tissue-specific conditions can provide scalable and predicable target identification.

Publication Title

Network biology of tumor stem-like cells identified a regulatory role of CBX5 in lung cancer.

Alternate Accession IDs

E-GEOD-35603

Sample Metadata Fields

Specimen part

View Samples
accession-icon DRP002835
RNA-Seq of MDA-MB231 cells harboring ANGPTL2 knockdown (MB231/miANGPTL2)
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

To determine the factors which might promote metastasis at downstream of ANGPTL2 in breast cancer cell, mRNA sequencing analyses of MDA-MB231 cells harboring ANGPTL2 knockdown (MB231/miANGPTL2) and relative to control (MB231/miLacZ) cells were carried out by using illumina GAIIx sequencer.

Publication Title

No associated publication

Alternate Accession IDs

None

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE158106
Effects of mechanical stress and deficiency of dihydrotestosterone or 17β-estradiol on temporomandibular joint osteoarthritis in mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Clariom S Array (clariomsmouse)

Description

Temporomandibular joint osteoarthritis (TMJ-OA), a subtype of temporomandibular joint dysfunction (TMD), is characterized by progressive cartilage degradation, subchondral bone erosion, and chronic pain. Although there has been extensive research on TMJ-OA, its etiology remains unknown. Age, hormonal factors, and excessive mechanical stress on the TMJ are proposed risk factors for TMJ-OA.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-158106

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE43744
Comparison of Gene Expression between Peri-implant Soft Tissue and Oral Mucosal Tissue
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The mucosal penetration area formed by implant placement is critical problems of dental implant treatment, because epithelial barrier is broken and it can become a source of inflammation. To clarify the influence and risk caused by dental implant treatment in peri-implant soft tissue, we compared to gene expression profile of peri-implant soft tissue and oral mucosal tissue with microarray analysis.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-43744

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE42335
Expression data for MALT1-responsive genes
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

In lymphocyte lineages, mucosa-associated lymphoid tissue 1 (MALT1) mediates the nuclear factor-B activation signal that stimulates progression of malignant tumors. However, its expression is inactivated in oral carcinoma patients with worse prognosis. Unveiling genes under the control of MALT1 will provide valuable information for understanding of the mechanism of carcinoma progression.

Publication Title

Inhibition of TGF-β and EGF pathway gene expression and migration of oral carcinoma cells by mucosa-associated lymphoid tissue 1.

Alternate Accession IDs

E-GEOD-42335

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE56533
Scgb1a1, Lpo and Gbp2 is Characteristically Expressed in Rat Peri-Implant Epithelium.
  • organism-icon Rattus norvegicus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The peri-implant epithelium plays an important role in the prevention against initial stage of inflammation. In order to minimize the risk of peri-implantitis, it is necessary to understand the biological characteristics of the peri-implant epithelium. The aim of this study was to investigate the characteristic gene expression profile of peri-implant epithelium as compared to junctional epithelium using laser microdissection and microarray analysis.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-56533

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE19488
Down-regulated Genes in Mouse Dental Papillae and Pulp
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Goal of experiment: Identify genes down-regulated between pre- and post-natal stages in mouse dental papillae.

Publication Title

Down-regulated genes in mouse dental papillae and pulp.

Alternate Accession IDs

E-GEOD-19488

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26077
Expression genes induced by intermittent mechanical stress (MS) in human periodontal ligament (PDL) cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Excessive MS is known to result in disappearance of the alveolar hard line, enlargement of thePDL space, and destruction of alveolar bone, leading to occlusal traumatism. The regulatory role of MS is believed to play a critical role in the process of alveolar bone remodeling. However, little is known about the effect of excessive MS on expression of osteoclastogenesis-related genes in human PDL cells.

Publication Title

Hyperocclusion stimulates osteoclastogenesis via CCL2 expression.

Alternate Accession IDs

E-GEOD-26077

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0