refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 119 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE144694
Expression data from Arabidopsis seedling during plastid development
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.0 ST Array (aragene10st)

Description

For establishing the photosynthetic apparatus plant cells must orchestrate the expression of genes encoded in both nucleus and chloroplast. Therefore a crosstalk between the two compartments is necessary.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-144694

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE158116
Transcriptional landscape of BE disease progression
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Our mouse model of BE in which overexpression of IL-1b in the squamous esophagus induces chronic inflammation leads to metaplasia and dysplasia at the squamo-columnar junction (SCJ) in the mouse gastro-esophageal junction resembles the human disease. Adult L2-IL1b mice were employed to investigate changes to the transcriptional landscape at the SCJ during disease progression from BE to EAC following pharmaceutical or genetic perturbations of interest to BE biology.

Publication Title

Notch Signaling Mediates Differentiation in Barrett's Esophagus and Promotes Progression to Adenocarcinoma.

Alternate Accession IDs

E-GEOD-158116

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-MEXP-3389
Transcription profiling of barley primed by Piriformospora indica colonization to produce systemic resistance to powdery mildew
  • organism-icon Hordeum vulgare
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Barley Genome Array (barley1)

Description

Colonization of barley roots with the basidiomycete fungus Piriformospora indica enhances resistance against the leaf pathogen Blumeria graminis f.sp. hordei (Bgh). To identify genes involved in this mycorrhiza-induced systemic resistance, we used the Affymetrix Barley1 22K gene chip for leaf transcriptome analysis of P. indica-colonized and non-colonized barley plants 12, 24 and 96 hours post inoculation (hpi) with a compatible Bgh strain.

Publication Title

No associated publication

Alternate Accession IDs

None

Sample Metadata Fields

Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE22180
In vitro carcinogenicity testing with Balb/c 3T3 Cells treated with various chemical carcinogens
  • organism-icon Mus musculus
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Background: Information on the carcinogenic potential of chemicals is only availably for High Production Volume products. There is however, a pressing need for alternative methods allowing for the chronic toxicity of substances, including carcinogenicity, to be detected earlier and more reliably. Here we applied advanced genomics to a cellular transformation assay to identify gene signatures useful for the prediction of risk for carcinogenicity. Methods: Genome wide gene expression analysis and qRT-PCR were applied to untransformed and transformed Balb/c 3T3 cells that exposed to 2, 4-diaminotoluene (DAT), benzo(a)pyrene (BaP), 2-Acetylaminoflourene (AAF) and 3-methycholanthrene (MCA) for 24h and 120h, at different concentrations, respectively. Furthermore, various bioinformatics tools were used to identify gene signatures predicting for the carcinogenic risk. Results: Bioinformatics analysis revealed distinct datasets for the individual chemicals tested while the number of significantly regulated genes increased with ascending treatment concentration of the cell cultures. Filtering of the data revealed a common gene signature that comprised of 13 genes whose regulation in cancer tissue has already been established. Strikingly, this gene signature was already identified prior to cell transformation therefore confirming the predictive power of this gene signature in identifying carcinogenic risks of chemicals. Comparison of fold changes determined by microarray analysis and qRT-PCR were in good agreement. Conclusion: Our data describes selective and commonly regulated carcinogenic pathways observed in an easy to use in vitro carcinogenicity assay. Here we defined a set of genes which can serve as a simply assay to predict the risk for carcinogenicity by use of an alternative in vitro testing strategy.

Publication Title

Toxicogenomics applied to in vitro carcinogenicity testing with Balb/c 3T3 cells revealed a gene signature predictive of chemical carcinogens.

Alternate Accession IDs

E-GEOD-22180

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE13837
Adapted Boolean Network Models for Extracellular Matrix Formation
  • organism-icon Homo sapiens
  • sample-icon 57 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background

Publication Title

Adapted Boolean network models for extracellular matrix formation.

Alternate Accession IDs

E-GEOD-13837

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE73395
BAL cell gene expression is predictive of Mortality in Idiopathic Pulmonary Fibrosis and enriched for Genes of Airway Basal Cells (IV)
  • organism-icon Homo sapiens
  • sample-icon 57 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: We got interested whether genes of airway basal cells are enriched in COPD.

Publication Title

BAL Cell Gene Expression Is Indicative of Outcome and Airway Basal Cell Involvement in Idiopathic Pulmonary Fibrosis.

Alternate Accession IDs

E-GEOD-73395

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE12021
Identification of inter-individual and gene-specific variances in mRNA expression profiles in the RA SM
  • organism-icon Homo sapiens
  • sample-icon 57 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Background. Rheumatoid arthritis (RA) is a chronic inflammatory and destructive joint disease, characterized by overexpression of pro-inflammatory/-destructive genes and other activating genes (e.g., proto-oncogenes) in the synovial membrane (SM). The gene expression in disease is often characterized by significant inter-individual variances via specific synchronization/ desynchronization of gene expression. To elucidate the contribution of the variance to the pathogenesis of disease, expression variances were tested in SM samples of RA patients, osteoarthritis (OA) patients, and normal controls (NC).

Publication Title

Identification of intra-group, inter-individual, and gene-specific variances in mRNA expression profiles in the rheumatoid arthritis synovial membrane.

Alternate Accession IDs

E-GEOD-12021

Sample Metadata Fields

Sex, Age, Disease

View Samples
accession-icon GSE73394
BAL cell gene expression is predictive of Mortality in Idiopathic Pulmonary Fibrosis and enriched for Genes of Airway Basal Cells (III)
  • organism-icon Homo sapiens
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Background: We got interested whether genes of airway basal cells are enriched in sarcoidosis.

Publication Title

BAL Cell Gene Expression Is Indicative of Outcome and Airway Basal Cell Involvement in Idiopathic Pulmonary Fibrosis.

Alternate Accession IDs

E-GEOD-73394

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE13637
Influenza virus infected HUVEC
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To delineate specific patterns of signaling networks activated by H5N1 we used a comparative systems biology approach analyzing gene expression in endothelial cells infected with three different human and avian influenza strains of high and low pathogenicity.

Publication Title

Essential impact of NF-kappaB signaling on the H5N1 influenza A virus-induced transcriptome.

Alternate Accession IDs

E-GEOD-13637

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22273
Genetic characterization of different tumor cell lines isolated from lung tumors of c-myc and c-raf transgenic mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

We recently reported isolation of various cancer progenitor cells of transgenic c-Myc and c-Raf mouse lung tumors [Reamon-Buettner SM and Borlak J, 2008]. As lung tumors can arise following dysregulation of signalling pathways normally activated during lung development we were particularly interested in investigating the genetic heterogeneity of these cancer cell lines. By whole genome expression analysis we identified two cell lines (A2C12, cRAF_cMYC) to be very different from the remaining tumor cells. Specifically the A2C12 and cRAF_cMYC cell lines expressed various stem cell markers, most notably CD34, CD44, Pdpn and Dlg7. Likewise, the A2C12 and cRAF_cMYC expressed the ATP-binding cassette (ABC) transporters Abcc1 and Abcg2 at different level when compared to other established cell lines. Furthermore, a genome wide expression profiling displayed differential gene expression pattern between and within progenitor cell lines. That provided important clues on heterogeneity in the signalling pathways amongst the cancer cell lines. We also knock down CD44 using a retroviral delivery system and observed an increased G1 peak and apoptosis as determined by flow cytometry. Finally, we analyzed promoters of regulated genes and identified overrepresented 18 transcription factor binding sites (TFBS) in common regulated genes, 10 unique TFBS in A2C12 and 9 unique TFBS in cRaf_cMyc. These data indicates that our tumor cell lines are suitable models to study the biology of lung cancer progenitor cell. Most importantly, we show that our tumor cell lines do not represent a homogeneous population of tumor-initiating cells. Understanding heterogeneity in tumors will lead to new diagnostic and therapeutic approaches.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-22273

Sample Metadata Fields

Disease, Disease stage, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0