refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 9523 results
Sort by

Filters

Organism

Technology

Platform

accession-icon SRP065153
Homo sapiens Transcriptome or Gene expression
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Several studies have shown that long non-coding RNAs (lncRNAs) may play anessential role in Epithelial-mesenchymal transition (EMT), which is an important step in tumor metastasis, however, little is known about the global change of lncRNA transcriptome during EMT. To investigate how lncRNA transcriptome alteration contributes to EMT progression regulation, we performed a whole-transcriptome strand-specific RNA deep sequencing of MCF10A induced EMT by TGF-ß. Deep sequencing results showed that the long RNA (>=200-nt) transcriptome of MCF10A was undergone a global changed in EMT, and this alteration was determined as early as 8h after being induced using TGF-ß. 8703 linear novel genes with ambiguous protein-coding potential were identified, 512 of which were further determined to be novel lncRNAs. After analyzing the expression of 5473 known and novel lncRNAs, as well as 2208 known and novel circRNAs during EMT, we found a large numbers of lncRNAs might be involved in the regulation of EMT. Intriguingly, we identified 216 gene clusters constituted by lncRNAs and/ornovel genes in “gene desert” region. The expressions of all genes in these clusters were changed concurrently during EMT, indicating that these clusters might play important role in EMT. Our study reveals a global reprogramming of lncRNAs transcriptome in EMT and provides clues to the study of the molecular mechanism of EMT.

Publication Title

No associated publication

Alternate Accession IDs

None

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP076058
Zea mays Raw sequence reads
  • organism-icon Zea mays
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

This study presented the differentially expressed genes post maize infected by Rhizoctonia solani.

Publication Title

No associated publication

Alternate Accession IDs

None

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP094817
Zea mays(B73) RNA-Seq
  • organism-icon Zea mays
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 3000

Description

Transposons in maize may be involved in the formation of circRNAs and further modulate phenotypic variation. To test our hypothesis, we performed circRNA-Seq(RNase R treated) on B73 seedlings(third leaves of V3 stage), and uncovered 1,572 high-confidence maize circRNAs, which show distinct genomic features compared to linear transcripts. Comprehensive analyses showed that LINE1-like elements (LLE) and their reverse complementary pairs (RCPLLEs) are significantly enriched in the flanking regions of circRNAs.

Publication Title

Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize.

Alternate Accession IDs

None

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon SRP023130
Gallus gallus strain:XH chicken and BEH chicken Transcriptome or Gene expression
  • organism-icon Gallus gallus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

The transcriptome sequencing reveals the divergence of the genetic mechanism of reproductive traits in two Chinese native breeds. XH chicken was meat-type breed with low reproduction ability, with a 70~80% incidence of broodiness in population, with the duration of 15~30 d brooding, and with a production of 60~90 eggs per year. BEH chicken was layer-type breed with high reproduction ability, with a 10%~15% incidence of broodiness in population, with the duration of 7~20 d brooding, and with a production of 180 eggs per year.

Publication Title

No associated publication

Alternate Accession IDs

None

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP142026
Saccharomyces cerevisiae Raw sequence reads
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

As an ancient winning strategy of microorganisms, glucose repression mechanism has become specialized to perfection in Saccharomyces cerevisiae. The galactose (GAL) metabolism network is stringently regulated by glucose repression in yeast and has been a classic system for studying gene regulation. We show here that the population of S. cerevisiae living in fermented milks has autonomously reinstated an ancient version of the structural GAL genes through introgression. The introgressed GAL network has completely abolished the glucose repression and conversed from a strictly inducible to a constitutive system through coordinative polygenic changes in the regulatory components of the network, including transitions in the upstream repressing sequence site of GAL4 that impair Mig1p-mediated repression and loss of function of the inducer Gal3p and the repressor Gal80p. In addition, the introgressed GAL2 gene has been duplicated while the native HXT6 and HXT7 genes have been inactivated, resulting in galactose-over-glucose preference and elevated galactose utilization rate. Relying on the reverse evolution of the GAL network, the non-lactose fermenting yeast has become a dominant species co-existing with other lactose fermenting microorganisms in fermented milks. Our results also provide new clues for developing yeast strains devoid of barriers to co-utilization of different sugars.

Publication Title

No associated publication

Alternate Accession IDs

None

Sample Metadata Fields

Specimen part, Disease, Cell line

View Samples
accession-icon SRP165652
Homo sapiens Genome sequencing
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIon Torrent S5

Description

This study presented the preliminary mechanistic studies of teniposide analogs for toxicity reduction

Publication Title

No associated publication

Alternate Accession IDs

None

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP151834
RNA-seq results of WT and CKIP-1 KO mouse macrophages
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The differential expression of gene in bone marrow derived macrophages from Ckip-1 KO mice and WT mice.

Publication Title

No associated publication

Alternate Accession IDs

None

Sample Metadata Fields

Sex, Age, Specimen part, Cell line

View Samples
accession-icon GSE17948
Expression Data From HCMV-Infected Human Monocytes: Role of EGFR
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Human cytomegalovirus (HCMV) induces pro-inflammatory monocytes following infection and we have evidence that EGFR is a key mediator in this early activation. To begin to address how this signalling pathway is responsible for the rapid activation of infected monocytes, we examined the role this pathway played in the transcriptome of infected monocytes. Global transcriptional profiling using cDNA microarrays revealed a significant number of genes, including inflammatory genes, were regulated in a EGFR-dependent manner, identifying this pathway as a key cellular control point in the conversion of monocytes to an activated pro-inflammatory state following HCMV infection.

Publication Title

Activation of EGFR on monocytes is required for human cytomegalovirus entry and mediates cellular motility.

Alternate Accession IDs

E-GEOD-17948

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9601
Expression Data From HCMV-Infected Human Monocytes
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Human cytomegalovirus induces a pro-inflammatory monocyte following infection and we have evidence that NF-B and phosphatidylinositol 3-kinase [PI(3)K] are key mediators in this early activation. To begin to address how these signalling pathways are responsible for the rapid activation of infected monocytes, we examined the role these pathways played in the transcriptome of infected monocytes. Global transcriptional profiling using cDNA microarrays revealed a significant number of genes, including inflammatory genes, were regulated in a NF-B- and/or PI(3)K-dependent manner, identifying these pathways as key cellular control points in the conversion of monocytes to an activated pro-inflammatory state following HCMV infection.

Publication Title

Transcriptome analysis of NF-kappaB- and phosphatidylinositol 3-kinase-regulated genes in human cytomegalovirus-infected monocytes.

Alternate Accession IDs

E-GEOD-9601

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11408
Expression Data From HCMV-Infected Human Monocytes Study 2
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Human cytomegalovirus induces a pro-inflammatory monocyte following infection. To begin to address how HCMV induces these rapid changes in infected monocytes, we examined the transcriptome of infected monocytes. Global transcriptional profiling using cDNA microarrays revealed a significant number of pro-inflammatory genes were upregulated within 4 hours post infection.

Publication Title

Transcriptome analysis reveals human cytomegalovirus reprograms monocyte differentiation toward an M1 macrophage.

Alternate Accession IDs

E-GEOD-11408

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0