refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 717 results
Sort by

Filters

Organism

Technology

Platform

accession-icon SRP139931
Transcriptome of human chorioamniotic membranes of severe preterm birth
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Preterm birth (PTB), defined as the delivery of an infant before 37 weeks of completed gestation, results of the interaction of both, genetic and environmental components and constitutes a complex multifactorial syndrome. Transcriptome analysis of PTB has proved challenging because of the multiple causes of PTB and the numerous maternal and foetal gestational tissues that must interact to facilitate parturition. A common pathway of labour and PTB may be the activation of fetal membranes. In this work chorioamnion membranes from severe preterm and term fetus were analysed using RNA seq. The primary goal of this study was to identify differentially expressed transcripts and dilucidate molecular mechanisms distinguishing severe PTBs from term births. Overall design: Chorioamnion tissues were collected immediately after labor from women who had spontaneous severe preterm births between 24-33 weeks (n=4) and women with spontaneous term labor (>37 weeks)(n=4).

Publication Title

No associated publication

Alternate Accession IDs

None

Sample Metadata Fields

Sex, Age, Specimen part, Disease stage

View Samples
accession-icon GSE41799
Transcriptional profiling of human cancer cell lines upon ZMPSTE24 silencing
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Defining the aging-cancer relationship is a challenging task. Mice deficient in Zmpste24, a metalloproteinase mutated in human progeria and involved in nuclear prelamin A maturation, recapitulate many features of aging. However, their short lifespan and cell-intrinsic and -extrinsic alterations restrict the application and interpretation of carcinogenesis protocols. To circumvent these limitations we have generated Zmpste24 mosaic mice. Interestingly, these mice develop normally - revealing cell-extrinsic mechanisms are preeminent in progeria- and display decreased incidence of infiltrating oral carcinomas. Moreover, ZMPSTE24 knock-down reduces human cancer cell invasiveness. Our results disclose the ZMPSTE24-prelamin A system as an example of antagonistic pleiotropy on cancer and aging, support the potential of cell-based and systemic therapies for progeria, and highlight ZMPSTE24 as a new anticancer target.

Publication Title

Prelamin A causes progeria through cell-extrinsic mechanisms and prevents cancer invasion.

Alternate Accession IDs

E-GEOD-41799

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE69828
Expression data of Arabidopsis seedlings in response to ARR1 or cytokinins, in the presence and absence of DELLA proteins
  • organism-icon Arabidopsis thaliana
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

DELLA proteins interact with ARR1 and modulate its activity.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-69828

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE56371
Transcriptional profiling reveals functional links between RasGrf1 and Pttg1 in pancreatic beta cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

We used microarrays to investigate gene expression changes in the pancreas of RasGrf1 KO mice. These animals have a reduction in the number and size of the pancreatic islets which lead to lower levels of insulin and glucagon in their blood.

Publication Title

Transcriptional profiling reveals functional links between RasGrf1 and Pttg1 in pancreatic beta cells.

Alternate Accession IDs

E-GEOD-56371

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MTAB-5315
Arabidopsis mutant with reduced expression of the Lys biosynthesis enzyme L,L-diaminopimelate aminotransferase (dapat)
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Despite the importance of amino acids as basic components of proteins, amino acids also serve as substrates for multiple other metabolic pathways, such as the TCA cycle that regulates energy homeostasis. The response to deficiency in the biosynthesis of specific amino acids (also termed “amino acid starvation”) has been studied extensively in yeast (See for example Petti et. al., 2011 Survival of starving yeast is correlated with oxidative stress response and non-respiratory mitochondria function. Proc. Natl. Acad. Sci. USA 108: 1089-1098). In contrast, very little is known about the metabolic responses to deficiency in the biosynthesis of amino acids in plants. A number of recent reports have already shown that catabolism of amino acids can significantly contribute to cellular energy homeostasis particularly during the nighttime and particularly in response to stress. In the present manuscript we used a previously characterized Arabidopsis mutant with reduced expression of the Lys biosynthesis enzyme L,L-diaminopimelate aminotransferase (dapat) to investigate the physiological and metabolic impacts of deficient Lys biosynthesis. The results obtained demonstrate that not stomatal limitations but rather biochemical alterations are responsible for the decreased photosynthesis and growth of the dapat mutants which mimic stress conditions associated to Lys deficiency. Our findings suggest that manipulation of Lys biosynthesis in dapat mutant simulates a stress response culminating in a highly exquisite metabolic reprogramming such that alternative substrates support energy generation once carbohydrate metabolism is down-regulated.

Publication Title

No associated publication

Alternate Accession IDs

None

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE69540
Expression data from MCF7 cells treated with Neuregulin (NRG) at different times
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To gain insights into the mechanism responsible for the protumorigenic actions of NRG we performed gene expression analyses of MCF7 cells treated with soluble NRG for 3, 6, 12 and 24 hours.

Publication Title

Breast cancer dissemination promoted by a neuregulin-collagenase 3 signalling node.

Alternate Accession IDs

E-GEOD-69540

Sample Metadata Fields

Age, Specimen part, Disease, Cell line, Treatment, Time

View Samples
accession-icon SRP133496
Arabidopsis SCW4 RNAi line transcriptome
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Plants with decreased SWC4 expression levels displayed several pleiotropic phenotypic alterations, suggesting that this gene participates in the regulation of different developmental processes. To evaluate genes whose expression was misregulated in SCW4 RNAi line, we performed RNA-seq differential expression analysis.

Publication Title

Arabidopsis SWC4 Binds DNA and Recruits the SWR1 Complex to Modulate Histone H2A.Z Deposition at Key Regulatory Genes.

Alternate Accession IDs

None

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE19245
Depleting cytosolic cysteine compromises the antioxidant capacity of the cytosol in Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Plant cells contain different O-acetylserine(thiol)lyase (OASTL) enzymes involved in Cys biosynthesis and located in different subcellular compartments. These enzymes are made up of a complex variety of isoforms resulting in different subcellular Cys pools. To unravel the contribution of cytosolic Cys to plant metabolism, we characterized the knockout oas-a1.1 and osa-a1.2 mutants, deficient in the most abundant cytosolic OASTL isoform in Arabidposis thaliana. Total intracellular Cys and glutathione concentrations were reduced, and the glutathione redox state was shifted in favour of its oxidized form. Interestingly, the capability of the mutants to chelate heavy metals did not differ from that of the wild type, but the mutants have an enhanced sensitivity to Cd. With the aim of establishing the metabolic network most influenced by the cytosolic Cys pool, we used the ATH1 GeneChip for evaluation of differentially expressed genes in the oas-a1.1 mutant grown under non-stress conditions. The transcriptomic footprints of mutant plants had predicted functions associated with various physiological responses that are dependent on reactive oxygen species and suggested that the mutant was oxidatively stressed. To further elucidate the specific function(s) of the OAS-A1 isoform in the adaptation response to cadmium we extended the trasncriptome experiment to the wild type and oas-a1.1 mutant plants exposed to Cd. The comparison of transcriptomic profiles showed a higher proportion of genes with altered expression in the mutant than in the wild type, highlighting up-regulated genes identified as of the general oxidative stress response rather than metal-responsive genes.

Publication Title

Knocking out cytosolic cysteine synthesis compromises the antioxidant capacity of the cytosol to maintain discrete concentrations of hydrogen peroxide in Arabidopsis.

Alternate Accession IDs

E-GEOD-19245

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32566
Exogenous Sulfide Reverses the Alteration of Transcriptional Profiling of the des1-1 Mutant (Arabidopsis thaliana)
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Arabidopsis thaliana cells contain different O-acetylserine(thiol)lyase (OASTL) enzymes that catalyze the biosynthesis of cysteine. Recently, we have deeply investigated about one of the minor OASTL-like protein located in the cytosol, named DES1, highlighting some important clues about its metabolic function. We have demonstrated that DES1 catalyzes the desulfuration of L-cysteine to sulfide plus ammonia and pyruvate, instead of the biosynthesis of Cys, and thus, is a novel L-cysteine desulfhydrase (EC 4.4.1.1). The functionality of DES1 is being revealed by the phenotype of the T-DNA insertion mutants des1-1 and des1-2. We have performed a comparative transcriptomic analysis on leaves of the des1-1 and Col-0 wild type plants grown for 30 days under long-day conditions. The normalized data from the replicates showed differential expression of 1614 genes in the des1-1 mutant, with 701 genes down-regulated and 913 genes up-regulated by more than twofold, with a False Discovery Rate (FDR) of < 0.05 and an intensity signal restriction of lgSignal >7. This des1-1 transcriptional profile show a strong alteration when compared to a previous comparative transcriptomic analysis performed on leaves of the des1-1 and Col-0 wild type plants grown for 20 days under identical long-day conditions (GSE 19244). We have also performed a comparative transcriptomic analysis on leaves of the des1-1 and Col-0 wild type plants grown for 20 days and treated with sodium sulfide for 10 additional days. The comparison of the transcriptional profile of des1-1+Na2S versus Col-0+Na2S clearly shows that exogenous sulfide reversed the transcriptional level differences between the mutant and the wild type to reach similar transcriptional patterns as the array GSE19244. Our results suggest a role of sulfide as transcriptional regulator in the des1-1 mutant background.

Publication Title

Cysteine-generated sulfide in the cytosol negatively regulates autophagy and modulates the transcriptional profile in Arabidopsis.

Alternate Accession IDs

E-GEOD-32566

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE19242
Mitochondrial beta-cyanoalanine synthase is essential for root hair formation in Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Cyanide is stoichiometrically produced as a co-product of the ethylene biosynthesis pathway, and it is detoxified by the b-cyanoalanine synthase enzyme. The molecular and phenotypical analysis of T-DNA insertional mutants of the mitochondrial b-cyanoalanine synthase CYS-C1 suggests that discrete accumulation of cyanide is not toxic for the plant and does not alter mitochondrial respiration rates, but does act as a strong inhibitor of root hair development. The cys-c1 null allele is defective in root hair formation and accumulates cyanide in root tissues. The root hair defect is phenocopied in wild type plants by the exogenous addition of cyanide to the growth medium and is reversed by the addition of hydroxocobalamin. Hydroxocobalamin not only recovers the root phenotype of the mutant, but also the formation of ROS at the initial step of the root hair tip. Transcriptional profile analysis of the cys-c1 mutant reveals that cyanide accumulation acts as a repressor signal for several genes encoding enzymes involved in cell wall rebuilding and the formation of the root hair tip, as well as genes involved in ethylene signaling and metabolism. Our results demonstrate that mitochondrial b-cyanoalanine synthase activity is essential to maintain a low level of cyanide for proper root hair development.

Publication Title

Mitochondrial beta-cyanoalanine synthase is essential for root hair formation in Arabidopsis thaliana.

Alternate Accession IDs

E-GEOD-19242

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0