refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1347 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE27475
Expression data from wild-type and AtERF73/HRE1 knock-down line under hypoxia in Arabidopsis seedlings
  • organism-icon Arabidopsis thaliana
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

To mimic natural flooding conditions, we have adopted an open system treatment, in which only roots are subjected to hypoxia treatment. Using microarray analysis, we identified a number of AP2/ERF genes in Arabidopsis that are induced at different stages of hypoxia treatment.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-27475

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE47745
Expression data from intestine of HDAC1 and HDAC2 conditionally mutated mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Acetylation and deacetylation of histones and other proteins depend on the opposing activities of histone acetyltransferases and histone deacetylases (HDACs), leading to either positive or negative gene expression changes. The use of HDAC inhibitors (HDACi) has uncovered a role for HDACs in the control of proliferation, apoptosis and inflammation. However, little is known of the roles of specific HDACs in intestinal epithelial cells (IEC). We investigated the consequences of ablating both Hdac1 and Hdac2 in murine IECs gene expression.

Publication Title

HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation.

Alternate Accession IDs

E-GEOD-47745

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54785
The acetylome regulators Hdac1 and Hdac2 differently modulate intestinal epithelial cell dependent homeostatic responses in experimental colitis
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Histone deacetylases (Hdac) remove acetyl groups from proteins, influencing global and specific gene expression. Hdacs control inflammation, as shown by Hdac inhibitor-dependent protection from DSS-induced murine colitis. While tissue-specific Hdac knockouts show redundant and specific functions, little is known of their intestinal epithelial cell (IEC) role. We have shown previously that dual Hdac1/Hdac2 IEC-specific loss disrupts cell proliferation and determination, with decreased secretory cell numbers and altered barrier function. We thus investigated how compound Hdac1/Hdac2 or Hdac2 IEC-specific deficiency alters the inflammatory response. Floxed Hdac1 and Hdac2 and villin-Cre mice were interbred. Compound Hdac1/Hdac2 IEC-deficient mice showed chronic basal inflammation, with increased basal Disease Activity Index (DAI) and deregulated Reg gene colonic expression. DSS-treated dual Hdac1/Hdac2 IEC-deficient mice displayed increased DAI, histological score, intestinal permeability and inflammatory gene expression. In contrast to double knockouts, Hdac2 IEC-specific loss did not affect IEC determination and growth, nor result in chronic inflammation. However, Hdac2 disruption protected against DSS colitis, as shown by decreased DAI, intestinal permeability and caspase-3 cleavage. Hdac2 IEC-specific deficient mice displayed increased expression of IEC gene subsets, such as colonic antimicrobial Reg3b and Reg3g mRNAs, and decreased expression of immune cell function-related genes. Our data show that Hdac1 and Hdac2 are essential IEC homeostasis regulators. IEC-specific Hdac1 and Hdac2 may act as epigenetic sensors and transmitters of environmental cues and regulate IEC-mediated mucosal homeostatic and inflammatory responses. Different levels of IEC Hdac activity may lead to positive or negative outcomes on intestinal homeostasis during inflammation

Publication Title

The acetylome regulators Hdac1 and Hdac2 differently modulate intestinal epithelial cell dependent homeostatic responses in experimental colitis.

Alternate Accession IDs

E-GEOD-54785

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE60003
Expression data from Control or ShSuz12 rat Intestinal epithelial cells IEC-6
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Polycomb-group proteins form multimeric protein complexes involved in transcriptional silencing. The Polycomb Repressive complex 2 (PRC2) contains the Suppressor of Zeste-12 protein (Suz12) and the histone methyltransferase Enhancer of Zeste protein-2 (Ezh2). This complex, catalyzing the di- and tri-methylation of histone H3 lysine 27, is essential for embryonic development and stem cell renewal. However, the role of Polycomb-group protein complexes in the control of the intestinal epithelial cell (IEC) phenotype is not known. We investigated the impact of Suz 12 depletion on gene expression in IEC-6 cells.

Publication Title

The histone H3K27 methylation mark regulates intestinal epithelial cell density-dependent proliferation and the inflammatory response.

Alternate Accession IDs

E-GEOD-60003

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP150561
RNA-seq of human gastric cancer cell line (AGS)
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Transcriptomic sequencing of human gastric cancer cell line (AGS) upon citral treatment

Publication Title

No associated publication

Alternate Accession IDs

None

Sample Metadata Fields

Sex, Specimen part, Disease, Cell line

View Samples
accession-icon GSE28973
Differential transcriptome analyses of three wheat genotypes in their response to Fusarium Head Blight and trichothecenes
  • organism-icon Triticum aestivum
  • sample-icon 142 Downloadable Samples
  • Technology Badge Icon Affymetrix Wheat Genome Array (wheat)

Description

Fusarium Head Blight (FHB) is a disease of wheat and other cereal crops, where Fusarium graminearum and related species infects the wheat inflorescence during and post-anthesis. The fungus produces trichothecene toxins that accumulate in the grain of infected head, and are required for disease spread. Microarrays were used to observe differential gene expression in the uninoculated spikelets of FHB-challenged wheat spikes in three wheat genotypes. A summary of our findings will be published in Plant Pathology.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-28973

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE54556
Gene expression during early infection by Fusarium graminearum in wheat lines susceptible and resistant to fusarium head blight
  • organism-icon Triticum aestivum
  • sample-icon 111 Downloadable Samples
  • Technology Badge Icon Affymetrix Wheat Genome Array (wheat)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of biomarker genes for resistance to a pathogen by a novel method for meta-analysis of single-channel microarray datasets.

Alternate Accession IDs

E-GEOD-54556

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE69509
Gene expression in wheat heads treated with Fusarium graminearum mutants that produce a priming-induced resistance to fusarium head blight
  • organism-icon Triticum aestivum
  • sample-icon 90 Downloadable Samples
  • Technology Badge Icon Affymetrix Wheat Genome Array (wheat)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-69509

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE4935
wheat expression level polymorphism study 39 genotypes 2 biological reps
  • organism-icon Triticum aestivum
  • sample-icon 77 Downloadable Samples
  • Technology Badge Icon Affymetrix Wheat Genome Array (wheat)

Description

The use of statistical tools established for the genetic analysis of quantitative traits can be applied to gene expression data. Quantitative trait loci (QTL) analysis can associate expression of genes or groups of genes with particular genomic regions and thereby identify regions that play a role in the regulation of gene expression. A segregating population of 41 doubled haploid (DH) lines from the hard red spring wheat cross RL4452 x AC Domain was used. This population had previously been mapped with microsatellites and includes a full QTL analysis for agronomic and seed quality traits. Expression analysis from 5 day post anthesis developing seed was conducted on 39 of the 41 DH lines using the Affymetrix wheat array. Expression analysis of developing seeds from field grown material identified 1,327 sequences represented by Affymetrix probe sets whose expression varied significantly between genotypes of the population. A sub-set of 378 transcripts were identified that each mapped to a single chromosome interval illustrating that major expression QTLs can be found in wheat. Genomic regions corresponding to multiple expression QTLs were identified that were coincident with previous identified seed quality trait QTL. These regions may be important regulatory regions governing economically important traits. Comparison of expression mapping data with physical mapping for a sub-set of sequences showed that both cis and trans acting expression QTLs were present.

Publication Title

Identifying regions of the wheat genome controlling seed development by mapping expression quantitative trait loci.

Alternate Accession IDs

E-GEOD-4935

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE5942
Wheat expression level polymorphism study parentals and progenies from SB location
  • organism-icon Triticum aestivum
  • sample-icon 76 Downloadable Samples
  • Technology Badge Icon Affymetrix Wheat Genome Array (wheat)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identifying regions of the wheat genome controlling seed development by mapping expression quantitative trait loci.

Alternate Accession IDs

E-GEOD-5942

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0