refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 1 of 1 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE32984
Gene expression profiling of Human Umbilical Vein Endothelial Cells (HUVEC) after treatment with Erg or control antisense (GeneBloc)
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The endothelial transcription factor Erg (Ets Related Gene) plays an important role in homeostasis and angiogenesis by regulating many endothelial functions including survival and junction stability. Here we show that Erg regulates endothelial cell migration. Transcriptome profiling of Erg-deficient endothelial cells (EC) identified 80 genes involved in cell migration as candidate Erg targets, including regulators of the Rho GTPases. Inhibition of Erg expression in human umbilical vein endothelial cells (HUVEC) resulted in decreased migration in vitro, whilst Erg over-expression using adenovirus caused increased migration. Live-cell imaging of Erg-deficient HUVEC showed a reduction in lamellipodia, in line with decreased motility. Both actin and tubulin cytoskeletons were disrupted in Erg-deficient EC, with a dramatic increase in tubulin acetylation. Amongst the most significant microarray hit was the cytosolic histone deacetylase (HDAC)-6, a regulator of cell migration. Rescue experiments confirmed that HDAC6 mediates the Erg-dependent regulation of tubulin acetylation and actin localization.

Publication Title

The transcription factor Erg regulates expression of histone deacetylase 6 and multiple pathways involved in endothelial cell migration and angiogenesis.

Alternate Accession IDs

E-GEOD-32984

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0