Transcriptional profiling of 6-day-old seedlings of Arabidopsis wild type control and mutants is performed using Affymetrix IVT Arabidopsis ATH1 Genome Array.
Interactive and noninteractive roles of histone H2B monoubiquitination and H3K36 methylation in the regulation of active gene transcription and control of plant growth and development.
Age, Specimen part
View SamplesTranscription profiling of Arabidopsis mutant ron1-1 vs the wild type Ler
The RON1/FRY1/SAL1 gene is required for leaf morphogenesis and venation patterning in Arabidopsis.
None
Specimen part
View SamplesWe used microarrays to compare gene expression across different murine tissues.
Mice deficient in the respiratory chain gene Cox6a2 are protected against high-fat diet-induced obesity and insulin resistance.
Sex, Specimen part
View SamplesAim: Differentiation of cardiac fibroblasts (Fb) into myofibroblasts (MyoFb) is responsible for connective tissue buildup in myocardial remodeling. We examined reversibility of MyoFb differentiation. Methods and Results: Adult rat cardiac Fb were cultured on a plastic substratum providing mechanical stress, with conditions to obtain different Fb phenotypes. Fb spontaneously differentiated to proliferating MyoFb (p-MyoFb) with stress fiber formation decorated with alpha-smooth muscle actin (-SMA). Transforming growth factor-1 (TGF-1) promoted terminal differentiation into -SMA positive MyoFb showing near absence of proliferation i.e. non-p-MyoFb (2-fold increase in cell number after 12 days vs 11-fold for p-MyoFb). SD-208, a TGF--receptor-I kinase blocker, inhibited p-MyoFb differentiation as shown by stress fiber absence, low levels of -SMA protein expression, and high levels of proliferation (32-fold increase after 12 days). Fb seeded in collagen matrices induced no contraction, whereas p-MyoFb and non-p-MyoFb induced 2.5- and 4-fold contraction. Fb produced low levels of collagen and secreted high levels of IL-10. Non-p-MyoFb showed high collagen production and high MCP-1 and TIMP-1 secretion. Transcriptome analysis indicated differential gene expression between all phenotypes. Dedifferentiation of p-MyoFb, but not of non-p-MyoFb, was induced by SD-208 despite maintained stress, shown by stress fiber de-polymerization in 30% of p-MyoFb vs in 8% of non-p-MyoFb. Stress fiber de-polymerization could be induced by mechanical strain release in p-MyoFb and non-p-MyoFb (2 day culture in unrestrained 3-D collagen matrices). Only p-MyoFb showed true dedifferentiation after long-term 3-D culture. Conclusions: Both reduction in mechanical strain and TGF--receptor-I kinase inhibition can reverse p-MyoFb differentiation but not in non-p-MyoFb.
Reversible and irreversible differentiation of cardiac fibroblasts.
Sex, Specimen part
View SamplesGlucocorticoid resistance (GCR) is defined as an unresponsiveness to the anti-inflammatory properties of glucocorticoids (GCs) and their receptor, the glucocorticoid receptor (GR). It is a serious problem in the management of inflammatory diseases and occurs frequently. The strong pro-inflammatory cytokine TNF induces an acute form of GCR, not only in mice, but also in several cell lines, e.g. in the hepatoma cell line BWTG3, as evidenced by impaired Dexamethasone (Dex)-induced GR-dependent gene expression. We report that TNF has a significant and broad impact on the transcriptional performance of GR, but no impact on nuclear translocation, dimerization or DNA binding capacity of GR. Proteome-wide proximity-mapping (BioID), however, revealed that the GR interactome is strongly modulated by TNF. One GR cofactor that interacts significantly less with the receptor under GCR conditions is p300. NF?B activation and p300 knockdown both reduce transcriptional output of GR, whereas p300 overexpression and NF?B inhibition revert TNF-induced GCR, which is in support of a cofactor reshuffle model. This hypothesis is supported by FRET studies. This mechanism of GCR opens new avenues for therapeutic interventions in GCR diseases Overall design: Examination of GR induced gene expression in 4 conditions (1 control: NI and 3 treated: DEX, TNF, TNFDEX) starting from 3 biological replicates
TNF-α inhibits glucocorticoid receptor-induced gene expression by reshaping the GR nuclear cofactor profile.
Specimen part, Cell line, Treatment, Subject
View SamplesThis experiment was set up in order to identify the (direct) transcriptional targets of the Ethylene Response Factor 115 (ERF115) transcription factor. Because ERF115 expression occurs in quiescent center (QC) cells and strong effects on the QC cells were observed in ERF115 overexpression plants, root tips were harvested for transcript profiling in order to focus on root meristem and QC specific transcriptional targets.
ERF115 controls root quiescent center cell division and stem cell replenishment.
Age, Specimen part
View SamplesMesenchymal progenitor cells can be differentiated in vitro into myotubes that exhibit many characteristic features of primary mammalian skeletal muscle fibers. However, in general, they do not show the functional excitation-contraction coupling or the striated sarcomere arrangement typical of mature myofibers. Epigenetic modifications have been shown to play a key role in regulating the progressional changes in transcription necessary for muscle differentiation. In this study, we demonstrate that treatment of murine C2C12 mesenchymal progenitor cells with 10 M of the DNA methylation inhibitor 5-azacytidine (5AC) promotes myogenesis, resulting in myotubes with enhanced maturity as compared to untreated myotubes. Specifically, 5AC treatment resulted in the upregulation of muscle genes at the myoblast stage while at later stages nearly 50 % of the 5AC-treated myotubes displayed a mature, well-defined sarcomere organization as well as spontaneous contractions that coincided with action potentials and intracellular calcium transients. Both the percentage of striated myotubes and their contractile activity could be inhibited by 20 nM TTX, 10 M ryanodine and 100 M nifedipine, suggesting that action potential-induced calcium transients are responsible for these characteristics. Our data suggest that genomic demethylation induced by 5AC overcomes an epigenetic barrier that prevents untreated C2C12 myotubes from reaching full maturity.
Epigenetics: DNA demethylation promotes skeletal myotube maturation.
Cell line, Treatment
View SamplesGenetic studies in T-cell acute lymphoblastic leukemia have uncovered a remarkable complexity of oncogenic and loss-of-function mutations. Amongst this plethora of genetic changes, NOTCH1 activating mutations stand out as the most frequently occurring genetic defect, identified in more than 50% of T-cell acute lymphoblastic leukemias, supporting an essential driver role for this gene in T-cell acute lymphoblastic leukemia oncogenesis. In this study, we aimed to establish a comprehensive compendium of the long non-coding RNA transcriptome under control of Notch signaling. For this purpose, we measured the transcriptional response of all protein coding genes and long non-coding RNAs upon pharmacological Notch inhibition in the human T-cell acute lymphoblastic leukemia cell line CUTLL1 using RNA-sequencing. Similar Notch dependent profiles were established for normal human CD34+ thymic T-cell progenitors exposed to Notch signaling activity in vivo. In addition, we generated long non-coding RNA expression profiles (array data) from GSI treated T-ALL cell lines, ex vivo isolated Notch active CD34+ and Notch inactive CD4+CD8+ thymocytes and from a primary cohort of 15 T-cell acute lymphoblastic leukemia patients with known NOTCH1 mutation status. Integration of these expression datasets with publically available Notch1 ChIP-sequencing data resulted in the identification of long non-coding RNAs directly regulated by Notch activity in normal and malignant T-cell context. Given the central role of Notch in T-cell acute lymphoblastic leukemia oncogenesis, these data pave the way towards development of novel therapeutic strategies that target hyperactive Notch1 signaling in human T-cell acute lymphoblastic leukemia. Overall design: CUTLL1 cell lines were treated with Compound E (GSI) or DMSO (solvent control). Cells were collected 12 h and 48 h after treatment. This was performed for 3 replicates. RNA-sequencing was performed on these samples.
The Notch driven long non-coding RNA repertoire in T-cell acute lymphoblastic leukemia.
No sample metadata fields
View SamplesStudy on gene expression in multifunctional protein 2 deficient mice. Liver samples of two days old mice in normal conditions are used. In total 8 arrays were hybridized corresponding to 4 KO mice and 4 WT mice Results: Cholesterol synthesis is induced and ppar alpha targets also differentially expressed between KO and WT.
Coordinate induction of PPAR alpha and SREBP2 in multifunctional protein 2 deficient mice.
No sample metadata fields
View SamplesRNAi mediated knockdown of BTG1 in the acute lymphoblastic cell line RS4;11 causes this cell line to become resistant to prednisolone treatment when compared to control cells.
BTG1 regulates glucocorticoid receptor autoinduction in acute lymphoblastic leukemia.
Specimen part, Cell line, Treatment
View Samples