refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 34 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE33056
Expression data from polycystic kidney disease susceptible and resistant rat strains
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

To facilitate the search for genetic modifiers that modulate ARPKD disease progression and severity, we sought to generate a congenic rat model that carries the PCK Pkhd1 mutation but is resistant to the development of ARPKD. We transferred the Pkhd1 mutation from the PCK rat onto the genetic background of the FHH (Fawn-Hooded Hypertensive) rat. This newly developed strain, called FHH.Pkhd1, showed significant amelioration of renal disease, and delayed onset of biliary abnormalities. To initiate the exploration for genes and pathways that modulate susceptibility to renal cystogenesis, we investigated transcriptional changes in kidneys from PCK, SD, FHH and FHH.Pkhd1 rats by microarray analysis.

Publication Title

Role of genetic modifiers in an orthologous rat model of ARPKD.

Alternate Accession IDs

E-GEOD-33056

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP051406
Transcriptional Reversion of Cardiac Myocyte Fate During Mammalian Cardiac Regeneration.
  • organism-icon Mus musculus
  • sample-icon 35 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Illumina HiSeq 2500

Description

Rationale: Neonatal mice have the capacity to regenerate their hearts in response to injury, but this potential is lost after the first week of life. The transcriptional changes that underpin mammalian cardiac regeneration have not been fully characterized at the molecular level. Objective: The objectives of our study were to determine if myocytes revert the transcriptional phenotype to a less differentiated state during regeneration and to systematically interrogate the transcriptional data to identify and validate potential regulators of this process. Methods and Results: We derived a core transcriptional signature of injury-induced cardiac myocyte regeneration in mouse by comparing global transcriptional programs in a dynamic model of in vitro and in vivo cardiac myocyte differentiation, in vitro cardiac myocyte explant model, as well as a neonatal heart resection model. The regenerating mouse heart revealed a transcriptional reversion of cardiac myocyte differentiation processes including reactivation of latent developmental programs similar to those observed during de-stabilization of a mature cardiac myocyte phenotype in the explant model. We identified potential upstream regulators of the core network, including interleukin 13 (IL13), which induced cardiac myocyte cell cycle entry and STAT6/STAT3 signaling in vitro. We demonstrate that STAT3/periostin and STAT6 signaling are critical mediators of IL13 signaling in cardiac myocytes. These downstream signaling molecules are also modulated in the regenerating mouse heart. Conclusions: Our work reveals new insights into the transcriptional regulation of mammalian cardiac regeneration and provides the founding circuitry for identifying potential regulators for stimulating heart regeneration. Overall design: Comparison of transcriptional programs of primary myocardial tissues sampled from neonatal mice and murine hearts undergoing post-injury regeneration, along with in vitro ESC-differentiated cardiomyocytes

Publication Title

Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration.

Alternate Accession IDs

GSE64403

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE98757
Dysregulated Signalling leads to altered cell migration: an oncogenic basis for the development of CCSK
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

The oncogenic mechanisms and tumour biology underpinning Clear Cell Sarcoma of Kidney (CCSK), the second commonest paediatric renal malignancy, are poorly understood and currently therapy depends heavily on Doxorubicin with cardiotoxic side-effects. Previously, we characterised the balanced t(10;17)(q22;p13) chromosomal translocation, identified at that time as the only recurrent genetic aberration in CCSK. This translocation results in an in-frame fusion of the YWHAE (encoding 14-3-3e) and NUTM2 genes, with a somatic incidence of 12%. Clinico-pathological features of that cohort suggested that this aberration might be associated with higher stage and grade disease. Since no primary CCSK cell line exists, we generated various stably transfected cell lines containing doxycycline-inducible HA-tagged-YWHAE-NUTM2, in order to study the effect of expressing this transcript. 14-3-3e-NUTM2-expressing cells exhibited significantly greater cell migration compared to mock-treated controls. Gene and protein expression studies conducted in parallel on this model system suggested dysregulation of signalling pathways as a basis to the migration changes. Importantly, by blocking these signalling pathways using anti-EGFR, anti-IGF1R and anti-PDGFa neutralising antibodies, the migratory advantage conferred by transcript expression was abrogated. These results support 14-3-3e-NUTM2 expression as a contributor to CCSK tumorigenesis and provide avenues for the exploration of novel therapeutic approaches in CCSK.

Publication Title

Dysregulated mitogen-activated protein kinase signalling as an oncogenic basis for clear cell sarcoma of the kidney.

Alternate Accession IDs

E-GEOD-98757

Sample Metadata Fields

Disease, Cell line

View Samples
accession-icon SRP069190
Forward genetic screens in zebrafish identify novel molecular pathways regulating early T cell development
  • organism-icon Danio rerio
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Lymphocytes represent basic components of vertebrate adaptive immune systems, suggesting the utility of non-mammalian models to define the molecular basis of their development and differentiation. Our forward genetic screens in zebrafish for recessive mutations affecting early T cell development revealed several major genetic pathways. The identification of lineage-specific transcription factors and specific components of cytokine signaling and DNA replication/repair pathways known from studies of immuno-compromised mammals provided an evolutionary cross-validation of the screen design. Unexpectedly, however, certain pre-mRNA processing factor genes, including tnpo3, encoding a regulator of alternative splicing, were also found to play a specific role in early T cell development. In both zebrafish and mouse, TNPO3 deficiency impairs intrathymic T cell differentiation, illustrating evolutionarily conserved and cell type-specific functions of certain pre-mRNA processing factor. Overall design: Taking advantage of the apparent evolutionary conservation of lymphocyte-based immunity, we conducted genetic screens in zebrafish aimed at identifying novel regulators of T lymphocyte development. Apart from mutations in genes encoding lymphoid lineage-specific transcription factors, and components of cytokine signaling and DNA replication/repair pathways, mutations in genes encoding pre-mRNA processing factors were also found. To examine the molecular consequences, transcriptome analyses were conducted for three mutants, snapc3, lsm8, tnpo3.

Publication Title

Forward Genetic Screens in Zebrafish Identify Pre-mRNA-Processing Pathways Regulating Early T Cell Development.

Alternate Accession IDs

GSE77480

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP083759
Voluntary running triggers VGF-mediated oligodendrogenesis to prolong the lifespan of Snf2h-null ataxic mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Exercise enhances cognitive function and slows progressive neurodegenerative disease. While exercise promotes neurogenesis, oligodendrogenesis and adaptive myelination are also significant contributors to brain repair and brain health. Nonetheless, the molecular details underlying these effects remain poorly understood. Conditional ablation of the Snf2h gene (Snf2h cKO) impairs cerebellar development producing mice with poor motor function, progressive ataxia and death between postnatal day 25 to 45. Here we show that voluntary running induced an endogenous brain repair mechanism that resulted in a striking increase in hindbrain myelination and the long-term survival of Snf2h cKO mice. Further experiments identified the VGF growth factor as a major driver underlying this effect. VGF neuropeptides could promote oligodendrogenesis in vitro, while Snf2h cKO mice treated with full-length VGF-encoding adenoviruses obliterated the requirement of exercise for survival. Together, these results suggest that VGF delivery could represent a therapeutic strategy for cerebellar ataxia and other pathologies of the central nervous system. Overall design: 4 samples per genotype in biological replicates (8 paired-end libraries)

Publication Title

Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice.

Alternate Accession IDs

GSE86235

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE69775
Early gene expression of regenerating zebrafish hearts following water or atropine treatment
  • organism-icon Danio rerio
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

We report global RNA expression profiles from whole zebrafish hearts 24 hours after ventricle amputation. Zebrafish were exposed to atropine or water following surgery.

Publication Title

Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration.

Alternate Accession IDs

E-GEOD-69775

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE70124
Genomic structure, evolution and molecular classification of acute myeloid leukemia
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: Acute myeloid leukemia (AML) is driven by somatic mutations and genomic rearrangements affecting >20 genes. Many of these are recent discoveries and how this molecular heterogeneity dictates AML pathophysiology and clinical outcome remains unclear. Methods: We sequenced 111 leukemia genes for driver mutations in 1540 AML patients with cytogenetic and clinical data. We modeled AMLs genomic structure, defining genetic interactions, patterns of temporal evolution and clinical correlations. Results: We identified 5,236 driver mutations involving 77 loci, including hotspot mutations in MYC. We found 1 driver mutation in 96% patients, and 2 in 85%. Gene mutations implicated in age related clonal hematopoiesis (DNMT3A, ASXL1, TET2) were the earliest in AML evolution, followed by highly specific and ordered patterns of co-mutation in chromatin, transcription and splicing regulators, NPM1 and signaling genes. The patterns of co-mutation compartmentalize AML into 12 discrete molecular classes, each presenting with distinct clinical manifestation. Amongst these, mutations in chromatin and spliceosome genes demarcate a molecularly heterogeneous subgroup enriched for older AML patients currently classified as intermediate risk and results in adverse prognosis. Two- and three-way genetic interactions often implicating rare genes/mutation-hotspots, markedly redefined clinical response and long-term curability, with the NPM1:DNMT3A:FLT3ITD genotype (6% patients) identifying poor prognosis disease, whereas within the same class NPM1:DNMT3A:NRASG12/13 (3%) associated with favorable outlooks. Conclusions: 79% of AML is molecularly classified in 12 genomic subgroups. These represent distinct molecular phylogenies, implicating complex genotypes. Delineation of higher-order genomic relationships, guide the development of personally tailored classification, prognostication and clinical protocols. Similar studies across cancer types are warranted.

Publication Title

Genomic Classification and Prognosis in Acute Myeloid Leukemia.

Alternate Accession IDs

E-GEOD-70124

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE17895
Somatic Mutation Screen of Clear Cell RCC
  • organism-icon Homo sapiens
  • sample-icon 109 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes.

Alternate Accession IDs

E-GEOD-17895

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17818
Somatic Mutation Screen of Clear Cell RCC II
  • organism-icon Homo sapiens
  • sample-icon 109 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Systematic somatic mutation screening of 4000 genes in human clear cell renal cell carcinoma. Information on corresponding somatic mutations in each sample can be found at http://www.sanger.ac.uk/genetics/CGP/Studies/.

Publication Title

Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes.

Alternate Accession IDs

E-GEOD-17818

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE995
Differentiation of acute myeloid leukemia cells
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a), Affymetrix Human Full Length HuGeneFL Array (hu6800)

Description

We developed a general approach to small molecule library screening called GE-HTS (Gene Expression-Based High Throughput Screening) in which a gene expression signature is used as a surrogate for cellular states and applied it to the identification of compounds inducing the differentiation of acute myeloid leukemia cells. In screening 1,739 compounds, we identified 8 that reliably induced the differentiation signature, and furthermore yielded functional evidence of bona fide differentiation.

Publication Title

Gene expression-based high-throughput screening(GE-HTS) and application to leukemia differentiation.

Alternate Accession IDs

E-GEOD-995

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0