refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 98 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE90138
Gene expression profile in human T-cell acute lymphoblastic leukemia (T-ALL) cell lines
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We performed microarray gene expression profiling in 16 T-ALL cell lines

Publication Title

Aberrant activation of the GIMAP enhancer by oncogenic transcription factors in T-cell acute lymphoblastic leukemia.

Alternate Accession IDs

E-GEOD-90138

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE85695
Identification of Super-enhancer-associated Cancer Genes Provides Novel Therapeutic Targets in Adult T-cell Leukemia/Lymphoma
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Enhancer profiling identifies critical cancer genes and characterizes cell identity in adult T-cell leukemia.

Alternate Accession IDs

E-GEOD-85695

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE85694
Microarray gene expression analysis after THZ1 treatment in TL-Om1 cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Microarray gene expression profiling was performed in an adult T-cell leukemia/lymphoma cell line (TL-Om1) to analyze genes regulated by the THZ1 CDK7 inhibitor.

Publication Title

Enhancer profiling identifies critical cancer genes and characterizes cell identity in adult T-cell leukemia.

Alternate Accession IDs

E-GEOD-85694

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE11199
Identification of Tuberculosis Susceptibility Genes with Human Macrophage Gene Expression Profiles
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Although host genetics influences susceptibility to tuberculosis, few genes determining disease outcome have been identified. We hypothesized that macrophages from individuals with different clinical manifestations of tuberculosis infection would have distinct gene expression profiles, and that polymorphisms in these genes may also be associated with susceptibility to TB.

Publication Title

Identification of tuberculosis susceptibility genes with human macrophage gene expression profiles.

Alternate Accession IDs

E-GEOD-11199

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP198641
The X-linked DDX3X RNA helicase dictates translation re-programming and metastasis in melanoma
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The X-linked DDX3X gene encodes an ATP-dependent DEAD-box RNA helicase frequently altered in various human cancers including melanomas. Despite its important roles in translation and splicing, how DDX3X dysfunction specifically rewires gene expression in melanoma remains completely unknown. Here we uncover a DDX3X-driven post-transcriptional program that dictates melanoma phenotype and poor disease prognosis. Through an unbiased analysis of translating ribosomes we identified the microphtalmia-associated transcription factor, MITF, as a key DDX3X translational target that directs a proliferative-to-metastatic phenotypic switch in melanoma cells. Mechanistically, DDX3X controls MITF mRNA translation via an internal ribosome entry site (IRES) embedded within the 5' untranslated region. Through this exquisite translation-based regulatory mechanism, DDX3X steers MITF protein levels dictating melanoma metastatic potential in vivo and response to targeted therapy. Together these findings unravel a post-transcriptional layer of gene regulation that may provide a unique therapeutic vulnerability in aggressive male melanomas. Overall design: We sequenced transcripts associated with translationally active ribosomes (polysomes) isolated by sucrose gradient fractionation from DDX3X and control siRNA-transduced HT144 cells. Experiments were performed in duplicates.

Publication Title

The X-Linked DDX3X RNA Helicase Dictates Translation Reprogramming and Metastasis in Melanoma.

Alternate Accession IDs

GSE131343

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP066860
3´-end sequencing of poly(A)+ RNA in wild-type Saccharomyces cerevisiae and nuclear exosome mutant strains
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The nuclear exosome performs critical functions in non-coding RNA processing, and in diverse surveillance functions including the quality control of mRNP formation, and in the removal of pervasive transcripts. Most non-coding RNAs and pervasive nascent transcripts are targeted by the Nrd1p-Nab3p-Sen1p (NNS) complex to terminate Pol II transcription coupled to nuclear exosome degradation or 3´-end trimming. Prior to nuclear exosome activity, the Trf4p-Air2p-Mtr4p polyadenylation complex adds an oligo-A tail to exosome substrates. Inactivating exosome activity stabilizes and lengthens these A-tails. We utilized high-throughput 3´-end poly(A)+ sequencing to identify at nucleotide resolution the 3´ ends targeted by the nuclear exosome, and determine the sites of NNS-dependent termination genome-wide. Overall design: 3´-end mapping of wild-type and various nuclear exosome mutant strains, either using gene knockouts or the anchor away system to conditionally deplete FRB-tagged proteins from the nucleus

Publication Title

Common genomic elements promote transcriptional and DNA replication roadblocks.

Alternate Accession IDs

GSE75586

Sample Metadata Fields

Subject

View Samples
accession-icon GSE48978
Comparison of RNA-Seq and Microarray in Transcriptome Profiling During T Cell Activation
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Samples in this study probe the gene expression kinetics in human CCR6+ Th17 memory T cells activated under Th17 condition. Human CCR6+ Th17 memory T cells were purified from PBMC and gene expression was studied over a time course of 3 days after activation under Th17 condition. RNA from these samples was also profiled using RNA-Seq to compare different transcriptome profiling technologies.

Publication Title

Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells.

Alternate Accession IDs

E-GEOD-48978

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP071252
Transcriptome of new DGCR8_KO mouse embryonic stem cells generated by paired CRISPR/Cas9 approach
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study was to obtain the trasncriptome of DGCR8_KO mESCs to compare it with the transcriptome of WT mESCs (deposit separately). Overall design: mRNA profiles of DGCR8_KO mouse embryonic stem cells were generated by deep sequencing, in duplicate, using Illumina HiSeq2000.

Publication Title

Noncanonical function of DGCR8 controls mESC exit from pluripotency.

Alternate Accession IDs

GSE78974

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE26525
Expression data analyzed with LPIA in A549 lung carcinoma cells treated with geldanamycin.
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The statsitcal model, latent pathway identification analysis (LPIA), was implemented for the analysis of A549 lung carcinoma cells treated with geldanamycin. Control and treated samples were assayed with Affymetrix HG_U133_plus_2 arrays and analyzed using LPIA. LPIA looks for statistically signcant evidence of dysregulation in a network of pathways constructed in a manner that explicitly links pathways through their common function in the cell. Geldanamycin (geld) is known to inhibit the molecular chaperone protein, Hsp90, and plays a role in preventing the malignant transformation and proliferation of healthy cells during oncogenesis. LPIA successfully identified pathways specific to geldanamycin effects at the gene transcription level.

Publication Title

Network-based prediction for sources of transcriptional dysregulation using latent pathway identification analysis.

Alternate Accession IDs

E-GEOD-26525

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE148210
Microarray Analysis of ttg1 versus Wild-Type Developing Seeds
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

MYB-bHLH-TTG1 regulates Arabidopsis seed coat biosynthesis pathways directly and indirectly via multiple tiers of transcription factors

Publication Title

MYB-bHLH-TTG1 Regulates Arabidopsis Seed Coat Biosynthesis Pathways Directly and Indirectly via Multiple Tiers of Transcription Factors.

Alternate Accession IDs

E-GEOD-148210

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0