refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 52 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE143559
Transcriptomic changes during senescence of leaves and fine roots of Populus trichocarpa
  • organism-icon Populus trichocarpa
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Poplar Genome Array (poplar)

Description

We studied the changes that occur in gene transcription during seasonal senescence in Populus trichocarpa pioneer leaves and fine roots. Plant senescence is a strictly regulated physiological process that allows relocating of valuable nutrients from senescent tissues before death. It might be induced by internal or external factors and among them, phytohormones play an undoubtedly significant role. Senescence was extensively studied in leaves, but the aging of other ephemeral organs, located underground, and its drivers are still poorly understood. We focused on collective results to fill in the knowledge gap about senescence of fine, absorptive roots and leaves in order to check if there are universal mechanisms involved during plant organ senescence. Transcriptional profiling was conducted with the use of microarrays to identify genes involved in developmental PCD. Samples were collected three times during a growth season. The first collection was considered as a control and was collected in early summer (July 7–15) when leaves and the root system were fully developed and functional. The second group of leaf and root samples were harvested in early autumn (October 1–7) when chlorophyll levels in leaves had decreased by approximately 40% and when fine roots had changed in color from white to brown. The third group of samples were harvested in the middle of autumn (November 2–9) when chlorophyll levels in leaves decreased by approximately 65% and fine roots were dark brown or black color. Our results reveal the important role of phytohormones in regulating the senescence of both studied organs. The transcriptomic analyses showed significant changes in gene expression that are associated with phytohormones, especially with ABA and jasmonates. We conclude that phytohormonal regulation of senescence in roots and leaves is organ-specific. In roots, phytohormones are involved indirectly in regulation of senescence by increasing tolerance for cold or resistance for pathogens, whereas such correlation was not observed in leaves.

Publication Title

Allies or Enemies: The Role of Reactive Oxygen Species in Developmental Processes of Black Cottonwood (<i>Populus trichocarpa</i>).

Alternate Accession IDs

E-GEOD-143559

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP110981
Pitx1 directly controls the core limb development program to implement hindlimb identity [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 31 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Pitx1, critical regulator of a limited hindlimb-specific gene network, targets the limb development program common to both fore- and hindlimbs in order to implement hindlimb-specific limb morphology. Overall design: The gene regulatory networks governing forelimb vs. hindlimb development in mouse were investigated using expressing profiling of morphologically stage-matched e10.5 forelimbs and e11.0 hindlimbs, ChIPseq of chromatin marks, and ChIPseq of limb-specific transcription factors Pitx1 and Tbx5. The makeup of the Pitx1-directed components of the hindlimb gene network were investigated using expression profiling of Pitx1 null hindlimbs at two stages (e11.0 and e11.5).

Publication Title

Regulatory integration of Hox factor activity with T-box factors in limb development.

Alternate Accession IDs

GSE100727

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP074864
HOX13 activity reprograms cis-regulatory modules during digit development (RNA-Seq)
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The combinatorial expression of the Hox genes along the body axes, referred to as the HOX code, is a major determinant of cell fate and plays a prevailing role in generating the animal body plan. In developing limb buds, the paralogous group 13 genes of the HoxA and HoxD clusters are essential for patterning the distal-most limb structures, the digits. Inactivation of HOXA13 and HOXD13 transcription factors (HOX13) leads to complete digit agenesis in mice, but how HOX13 regulate transcriptional outcomes and confer identity to the distal-most limb cells has remained elusive. Here we performed genome-wide profiling of HOX13 by chromatin immunoprecipitation and analyzed the transcriptome and chromatin state of wild type early and late-distal limb buds, as well as Hoxa13-/-;Hoxd13-/- compound mutant limb buds. Our results show that inactivation of HOX13 impairs the activation and repression of putative cis-regulatory modules specific to the late-distal limb cells. Loss of HOX13 also disrupts the specific, spatial patterning of gene expression along the proximal-distal axis of the developing limb buds. These results show that proper termination of the early limb transcriptional program and activation of the late-distal limb program are coordinated by the dual action of HOX13 on cis-regulatory modules. Overall design: Totla mRNAs from dissected distal parts of e11.5 forelimb, of wild-type as well as Hoxa13-/-;Hoxd13-/- mice

Publication Title

Regulatory integration of Hox factor activity with T-box factors in limb development.

Alternate Accession IDs

GSE81357

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE97293
Genome-wide multi-omics profiling reveals extensive genetic complexity in 8p11-p12 amplified breast carcinomas
  • organism-icon Homo sapiens
  • sample-icon 53 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Frequent MYC coamplification and DNA hypomethylation of multiple genes on 8q in 8p11-p12-amplified breast carcinomas.

Alternate Accession IDs

E-GEOD-97293

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE20486
Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma
  • organism-icon Homo sapiens
  • sample-icon 97 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Genomic and expression profiling using 38K BAC array-CGH and Illumina HT-12 beadchips were performed on 97 diploid invasive breast tumors to assess the impact of gene dosage on gene expression patterns and the effect of other mechanisms on transcriptional levels. Patient stratification was performed according to axillary lymph node status (node-negative, pN0; node-positive, pN1) and overall survival (>8-year survivors; breast cancer-specific mortality within 8 years of diagnosis). Array-CGH results was validated by FISH using tumors showing HER2/neu gene amplification and expression profiling was confirmed using qPCR for 16 transcripts.

Publication Title

Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma.

Alternate Accession IDs

E-GEOD-20486

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE20462
Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma (transcriptomic profiling)
  • organism-icon Homo sapiens
  • sample-icon 97 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Genomic and expression profiling using 38K BAC array-CGH and Illumina HT-12 beadchips were performed on 97 diploid invasive breast tumors to assess the impact of gene dosage on gene expression patterns and the effect of other mechanisms on transcriptional levels. Patient stratification was performed according to axillary lymph node status (node-negative, pN0; node-positive, pN1) and overall survival (>8-year survivors; breast cancer-specific mortality within 8 years of diagnosis). Array-CGH results was validated by FISH using tumors showing HER2/neu gene amplification and expression profiling was confirmed using qPCR for 16 transcripts.

Publication Title

Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma.

Alternate Accession IDs

E-GEOD-20462

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE97177
Genome-wide multi-omics profiling reveals extensive genetic complexity in 8p11-p12 amplified breast carcinomas [expression]
  • organism-icon Homo sapiens
  • sample-icon 53 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Transcriptomic profiling of human breast tumors.

Publication Title

Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma.

Alternate Accession IDs

E-GEOD-97177

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP111102
Genome-wide multi-omics profiling reveals extensive genetic complexity in 8p11-p12 amplified breast carcinomas [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Transcriptomic profiling of human breast tumors using RNA sequencing Overall design: Evaluation of common fusion transcripts, genetic variants, and gene expression patterns in 8p11-p12 amplified breast carcinomas

Publication Title

Genome-wide multi-omics profiling of the 8p11-p12 amplicon in breast carcinoma.

Alternate Accession IDs

GSE100799

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon SRP058771
RNA-seq 1,25(OH)2D3 time course in THP-1 cells
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerII

Description

gene expression profiling by RNA-seq in THP-1 cells treated with 1,25(OH)2D3 for 2.5-24 h Overall design: three independent experiments of 1,25(OH)2D3 time course in THP-1 cells

Publication Title

Epigenome-wide effects of vitamin D and their impact on the transcriptome of human monocytes involve CTCF.

Alternate Accession IDs

GSE69284

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP075720
Smart-seq2 analysis of P17 FACS sorted retinal cells from the Kcng4-cre;stop-YFP X Thy1-stop-YFP Line#1 mice
  • organism-icon Mus musculus
  • sample-icon 381 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Four Kcng4-cre;stop-YFP mouse retinas from two mice were dissected, dissociated and FACS sorted, and single cell RNA-seq libraries were generated for 384 single cells using Smart-seq2. Aligned bam files are generated for 383 samples as one failed to align. Overall design: Four mouse retinas (labeled 1la, 1Ra, and 2la, 2Ra respective from the two mice) were used, and 96 single cells from each were processed using Smart-seq2. Total 384 cells Smart-seq2 analysis of P17 FACS sorted retinal cells from the Kcng4-cre;stop-YFP mice (Kcng4tm1.1(cre)Jrs mice [Duan et al., Cell 158, 793-807, 2015] crossed to the cre-dependent reporter Thy1-stop-YFP Line#1 [Buffelli et al., Nature 424, 430-434, 2003])

Publication Title

Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics.

Alternate Accession IDs

GSE81903

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0