26972c yeast cells were transformed with either empty vector (pYES3) or pYES3:Gm:bHLHm1. Cells were grown on low ammonium concentrations to observe transcriptional changes in the yeast genome in response to the soybean bHLHm1 transcription factor.
Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport.
No sample metadata fields
View SamplesIntroduction: The kidney is the major arbiter of extracellular phosphate homeostasis. The vast majority of glomerular filtrated phosphate is reabsorbed in the proximal tubule. Posttransplant phosphaturia is common and aggravated by sirolimus immunosuppression. The cause of sirolimus induced phosphaturia however remains elusive.
Sirolimus induced phosphaturia is not caused by inhibition of renal apical sodium phosphate cotransporters.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative genomics identifies candidate microRNAs for pathogenesis of experimental biliary atresia.
Specimen part, Treatment, Time
View SamplesNewborn Balb/c mice were injected with 1.5x10^6 fluorescent-forming units (ffu) of Rhesus rotavirus type-A or 0.9% NaCl (normal saline) intraperitoneally within 24 hours of birth to induce experimental model of biliary atresia. The extrahepatic bile ducts including gallbladder were microdissected en bloc at 3, 7 and 14 days after rhesus rotavirus or saline injection. GeneChip Mouse Gene 1.0 ST Array (Affymetrix, CA) were used to screen mRNAs whose expression was differently regulated after rhusus rotavirus injection compare to the normal saline controls.
Integrative genomics identifies candidate microRNAs for pathogenesis of experimental biliary atresia.
Specimen part, Treatment, Time
View SamplesBACKGROUND: Young age at portoenterostomy has been linked to improved outcome in biliary atresia, but pre-existing biological factors may influence the rate of disease progression. In this study, we aimed to determine whether molecular profiling of the liver identifies stages of disease at diagnosis. METHODS: We examined liver biopsies from 47 infants with biliary atresia enrolled in a prospective observational study. Biopsies were scored for inflammation and fibrosis, used for gene expression profiles, and tested for association with indicators of disease severity, response to surgery, and survival at 2 years. RESULTS: Fourteen of 47 livers displayed prominent features of inflammation (N=9) or fibrosis (N=5), with the remainder showing similar levels of both simultaneously. Differential profiling of gene expression of the 14 livers displayed a unique molecular signature containing 150 gene probes. Applying prediction analysis models, the probes classified 29 of the remaining 33 livers into inflammation or fibrosis. Molecular classification into the two groups was validated by the findings of increased hepatic population of lymphocyte subsets or tissue accumulation of matrix substrates. The groups had no association with traditional markers of liver injury or function, response to surgery, or complications of cirrhosis. However, infants with an inflammation signature were younger, while those with a fibrosis signature had decreased transplant-free survival. CONCLUSION: Molecular profiling at diagnosis of biliary atresia uncovers a signature of inflammation or fibrosis in most livers. This signature may relate to staging of disease at diagnosis and has implications to clinical outcomes.
Staging of biliary atresia at diagnosis by molecular profiling of the liver.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Lipid Nanoparticle-Mediated Delivery of Anti-miR-17 Family Oligonucleotide Suppresses Hepatocellular Carcinoma Growth.
Cell line
View SamplesTo functionally characterize the role of miR-17 family in HCC, lentiviral vector-based miR inhibitor TuD was used to inhibit miR-17 family of microRNAs in HepG2 and SK-Hep1 HCC cell lines Overall design: Methods: HepG2 and SK-Hep1 HCC cell lines were acquired from American Type Culture Collection (ATCC) and miR-17 TuD or NC TuD expressing lines were generated. mRNA profiling of miR-17 TuD or NC TuD expressing samples was performed using Illumina NGS. Total RNA was extracted as per manufacturer’s instructions (RNeasy kit, Qiagen). RNA quality was assessed using BioAnalyzer (Agilent). mRNA expression profiles were determined using next-generation sequencing (NGS) on the Illumina HiSeq 2000 platform producing 50bp paired-end reads. Bowtie/TopHat suites were used to align the reads to mouse genome or transcriptome and RSEM were used to quantify gene abundances. Gene level counts were then normalized with the R/Bioconductor package limma using the voom/variance stabilization method.
Lipid Nanoparticle-Mediated Delivery of Anti-miR-17 Family Oligonucleotide Suppresses Hepatocellular Carcinoma Growth.
Cell line, Subject
View SamplesTo functionally characterize the role of miR-17 family in HCC, lentiviral vector-based miR inhibitor TuD was used to inhibit miR-17 family of microRNAs in Hep3B cell line
Lipid Nanoparticle-Mediated Delivery of Anti-miR-17 Family Oligonucleotide Suppresses Hepatocellular Carcinoma Growth.
Cell line
View SamplesPurpose: MicroRNA-21 contributes to the pathogenesis of fibrogenic diseases in multiple organs including the kidney. To evaluate the therapeutic utility of antimiR-21 oligonucleotides in chronic kidney disease, we silenced miR-21 in mice that develop Alport Nephropathy due to a defect in the Col4a3 gene. The goals of this study to assess the effect of inhibiting miR-21 in the Col4a3-/- Alport Syndrome mouse model at 5.5 weeks of age. Methods: Col4a3-/-, Col4a3+/-, and Col4a3+/+ mice in the 129X1/SvJ genetic background were obtained. Mice received anti–miR-21 (25 mg/kg) or control anti-miR (25mg/kg) in phosphate-buffered saline (PBS) by inter-scapular subcutaneous injection twice per week. In some experiments mice received a range of doses from 12.5mg/kg once a week to 50mg/kg once a week. Anti–miR-21 is a high-affinity oligonucleotide complementary to the active site of miR-21. Mice received injections starting at 24 days (3.5 weeks) after birth and ending at 5, 7, 9 or 16 weeks after birth depending on the study objectives. Total RNA from kidney tissue was extracted as per manufacturer’s instructions (miREASY kit, Qiagen). RNA quality was assessed using BioAnalyzer (Agilent). mRNA expression profiles were determined using next-generation sequencing (NGS) on the Illumina HiSeq 2000 platform producing 50bp paired-end reads. Bowtie/TopHat suites were used to align the reads to mouse genome or transcriptome and RSEM were used to quantify gene abundances. Gene level counts were then normalized with the R/Bioconductor package limma using the voom/variance stabilization method. Results: Anti-miR-21 enhanced PPARa/RXR activity and associated downstream signaling pathways in glomerular, tubular and interstitial cells, enhanced mitochondrial function, which reduced mitochondrial ROS production and preserved tubular cell functions. In addition, inhibition of miR-21 reduced fibrogenic and inflammatory signaling in glomerular and interstitial cells, likely as a consequence of enhanced PPARa/RXR activity and mitochondrial function. Inhibition of miR-21 represents a novel therapeutic strategy for chronic kidney diseases including Alport Nephropathy. Overall design: Whole kidney mRNA profiles of Col4a3+/- (triplicate) and Col4a3-/- (quadruplicates) mice treated with either PBS or antimiR-21, ending at 5.5 weeks of age, were generated by Next Generation Sequencing using Illumina HiSeq 2000
Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways.
No sample metadata fields
View SamplesPromoter-proximal pausing of RNA polymerase II (Pol II) is a widespread transcriptional regulatory step across metazoans. Here we find that the nuclear exon junction complex (pre-EJC) is a critical and conserved regulator of this process. Depletion of pre-EJC subunits leads to a global decrease in Pol II pausing and to premature entry into elongation. This effect occurs, at least in part, via non-canonical recruitment of pre-EJC components at promoters. Failure to recruit the pre-EJC at promoters results in increased binding of the positive transcription elongation complex (P-TEFb) and in enhanced Pol II release. Notably, restoring pausing is sufficient to rescue exon skipping and the photoreceptor differentiation defect associated with depletion of pre-EJC components in vivo. We propose that the pre-EJC serves as an early transcriptional checkpoint to prevent premature entry into elongation, ensuring proper recruitment of RNA processing components that are necessary for exon definition. Overall design: polyA mRNA -seq in conditions with the indicated knockdown treatments
Promoter-proximal pausing mediated by the exon junction complex regulates splicing.
Specimen part, Cell line, Subject
View Samples