refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 81 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE12430
Loss of PATCHED (wechs-affy-mouse-512645)
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We are examining the genes that control initiation and progression of murine medulloblastomas that result from loss of patched. Approximately 25% of human medulloblastomas have mutations in patched or in other elements of the sonic hedgehog pathway. However, the cells from which these tumors originate (neural progenitors or stem cells), the cells that are responsible for tumor propagation (cancer stem cells), and the genes that are required for tumor progression are poorly understood. To address these questions, we have developed conditional patched knockout mice in which the gene is deleted in neural stem cells or progenitors. In addition, we have isolated a population of tumor-propagating cells from these tumors. By studying these models we will gain insight into the mechanisms of tumorigenesis and identify new targets for therapy.

Publication Title

Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma.

Alternate Accession IDs

E-GEOD-12430

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP200563
Whole lung transcriptomics of a house dust mite model of mild/moderate asthma
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Purpose: Identify whole lung gene expression patterns in a house dust mite model of mild/moderate asthma Methods: Lung gene expression profiles of 10 week old BALB/c female mice were generated by ribosome-depleted, 150 nt, paired-end, stranded RNA-seq with Illumina HiSeq v4. Sequence reads that passed quality filters after trimming were analyzed with Sailfish-cir to identify linear RNAs and circular RNAs. Differential expression of linear RNAs was assessed with Deseq2 . QRT–PCR validation was performed using TaqMan and SYBR Green methods. Results: 100 million sequence reads per sample were mapped to the mouse genome (build mm10) using Sailfish-cir to identify linear and circular RNA transcripts. Pathway analysis of differentially expressed genes identified upregulation of gene sets for human asthma, mouse lung allergic inflammation, Muc5ac regulated genes and smooth muscle genes after allergic sensitization. Gene level exppression in each asthma-related pathway was reduced by the miR-145 antagonist. The miR-145 antagonist and several nontargeting oligos also upregulated interferon signaling pathways suggesting a general antiinflammatory effect of LNA/DNA oligos in the lung. Conclusions: Lung-directed delivery of LNA/DNA oligonucleotides with cationic lipid nanoparticles is an efffective means to prevent inflammatory gene expression in a house dust mite model of mild/moderate asthma. Overall design: Linear and circular RNA transcript expression was compared in whole lung tissue from unsensitized, house dust mite sensitzed, antimiR-145 treated treated mice

Publication Title

Nanoparticle Delivery of Anti-inflammatory LNA Oligonucleotides Prevents Airway Inflammation in a HDM Model of Asthma.

Alternate Accession IDs

GSE132263

Sample Metadata Fields

Age, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP185984
MiR-145 antagonist effect in house dust mite model of asthma
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Purpose: Identify whole lung gene expression patterns modified by nanoparticle delivery of an antisense LNA/DNA oligonucleotide targeting mmu-miR145a-5p and nontargeting oligonucleotides Methods: Lung gene expression profiles of 10 week old BALB/c female mice were generated by polyA RNA-seq with Illumina HiSeq v4. Sequence reads that passed quality filters after timming were analyzed at the gene level with RNA STAR, featureCounts and Deseq2 . qRT–PCR validation was performed using TaqMan and SYBR Green methods. Results: 10-15 million sequence reads per sample were mapped to the mouse genome (build mm10). Pathway analysis of differentially expressed genes identified upregulation of gene sets for human asthma, mouse lung allergic inflammation, Muc5ac regulated genes and smooth muscle genes after allergic sensitization. Gene level exppression in each asthma-related pathway was reduced by the miR-145 antagonist. The miR-145 antagonist and several nontargeting oligos also upregulated interferon signaling pathways suggesting a general antiinflammatory effect of LNA/DNA oligos in the lung. Conclusions: Lung-directed delivery of LNA/DNA oligonucleotides with cationic lipid nanoparticles is an efffective means to prevent inflammatory gene expression in a house dust mite model of asthma Overall design: Lung gene expression in unsensitized, house dust mite sensitized, antimiR-145 treated and nontargeting oligonucleotide treated mice

Publication Title

Nanoparticle Delivery of Anti-inflammatory LNA Oligonucleotides Prevents Airway Inflammation in a HDM Model of Asthma.

Alternate Accession IDs

GSE126610

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP181955
RNAseq of nestin-expressing murine brainstem progenitors infected with ACVR1 WT or R206H ACVR1 with and without H3.1K27M
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

Diffuse intrinsic pontine glioma (DIPG) is an incurable pediatric brain tumor, resulting in the death of 200-300 children each year in the United States. Recently it was discovered that approximately 25% of all DIPG cases harbor activating mutations in ACVR1, a gene that encodes Activin A receptor (ALK2), a receptor in the bone morphogenetic protein (BMP) pathway, and that DIPGs with ALK2 mutations commonly harbor an H3.1K27M mutation. Herein, we used the RCAS/TVA retroviral system to study the effects of ACVR1 mutations and H3.1K27M on DIPG pathogenesis. In vitro expression of R206H ACVR1 with and without H3.1K27M in nestin-expressing brainstem progenitors resulted in upregulation of mesenchymal markers and gene set enrichment analysis (GSEA) revealed Stat3 pathway activation. Neonatal expression of ACVR1 R206H or G328V in combination with H3.1K27M and p53 deletion in nestin-expressing brainstem progenitors induced glioma-like lesions expressing mesenchymal markers with Stat3 activation but was not sufficient for full gliomagenesis. In combination with platelet-derived growth factor A (PDGFA) signaling, ACVR1 R206H and H3.1K27M significantly decreased survival and increased tumor incidence. We demonstrate that targeting the BMP signaling pathway may be an effective therapeutic strategy to treat ACVR1 R206H mutant DIPGs. Exogenous Noggin expression at tumor initiation significantly increased tumor latency and treatment of ACVR1 R206H mutant murine DIPGs with LDN212854, an ACVR1 inhibitor, significantly prolonged their survival. We confirm relevance of our model to the human disease as human DIPG models with ACVR1 mutations were also sensitive to treatment with LDN212854 in vitro. Altogether, our studies demonstrate that ACVR1 R206H and H3.1K27M promote tumor initiation, accelerate gliomagenesis, promote a mesenchymal profile in part due to Stat3 activation, and identify LDN212854 as a promising compound to treat children with DIPG. Overall design: We use RNAseq to study the transcriptomal effects of ACVR1 WT or R206H ACVR1 mutation alone and in combination with H3.1K27M mutation on murine nestin-expressing brainstem progenitors at P3-5 (using RCAS/TVA). Key findings were validated by Real-Time PCR.

Publication Title

ACVR1 R206H cooperates with H3.1K27M in promoting diffuse intrinsic pontine glioma pathogenesis.

Alternate Accession IDs

GSE125627

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE59484
Expression data for miR-33a over-expression in CD133-negative D456MG cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

MiR-33a is involved in the maintenance of Glioma Initiating Cells (GIC) and tumor progression. MicroRNA-33a could promote GIC growth and self-renewal by regulating two pathways including cAMP/PKA pathway and Notch pathway. We used microarrays to identify the direct target genes of miR-33a in a glioblastoma cell line D456MG.

Publication Title

miR-33a promotes glioma-initiating cell self-renewal via PKA and NOTCH pathways.

Alternate Accession IDs

E-GEOD-59484

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE95012
Loss of Cic leads to aberrant neural stem cell proliferation and differentiation and promotes gliomagenesis
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Mouse neural stem cells were generated from conditional knockout mice (Cicflox/flox) or the wild trype control mice (Cic+/+). Cic is conditionally knocked out following expression of Cre-recombinase. Cre-recombinase was incorporated in vitro via adenoviral-Cre transduction.

Publication Title

<i>Cic</i> Loss Promotes Gliomagenesis via Aberrant Neural Stem Cell Proliferation and Differentiation.

Alternate Accession IDs

E-GEOD-95012

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE46869
Gene expression profiles of PIK3CA knockdown by shRNA in lung cancer cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To gain insight into EMT-independent biological processes through which PI3K promotes invasion, RNA samples from 344SQ_p110 shRNA cells and 344SQ_scr cells were subjected to global transcriptional profiling.

Publication Title

ZEB1 sensitizes lung adenocarcinoma to metastasis suppression by PI3K antagonism.

Alternate Accession IDs

E-GEOD-46869

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP064317
Expression data for KDM1B knockdown in Glioma-Initiating Cells (GICs)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults, with glioma initiating cells (GICs) implicated to be critical for tumor progression and resistance to therapy. KDM1B is involved in regulating GICs'' responses to hypoxia, since over-expression of KDM1B delays the cell growth under hypoxia while knocking-down of KDM1B in GICs promotes their survival and tumorigenic abilities. Overall design: We used RNA-Sequencing to detail the global change of gene expression in GICs with knockdown of KDM1B, and identified de-regulated genes and pathways downstream of KDM1B. CD133+ D456MG GICs were infected with non-targeting control and shRNA of KDM1B. Then RNA was extracted and gene expression was profiled by RNA-Seq.

Publication Title

MiR-215 Is Induced Post-transcriptionally via HIF-Drosha Complex and Mediates Glioma-Initiating Cell Adaptation to Hypoxia by Targeting KDM1B.

Alternate Accession IDs

GSE73573

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE88828
Effects of IDH1-R132H on mouse neural stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Mouse neural stem cells were generated from conditional knock-in mice. Mutant IDH1 is conditionally expressed following expression of Cre-recombinase. Cre-recombinase was incorporated in vitro

Publication Title

Mutant IDH1 Disrupts the Mouse Subventricular Zone and Alters Brain Tumor Progression.

Alternate Accession IDs

E-GEOD-88828

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34126
An Animal Model of Myc-driven medulloblastoma
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Medulloblastoma (MB) is the most common malignant brain tumor in children. Patients whose tumors exhibit overexpression or amplification of the MYC oncogene (c-MYC) usually have an extremely poor prognosis, but there are no animal models of this subtype of the disease. Here we show that cerebellar stem cells expressing Myc and mutant Trp53 (p53) generate aggressive tumors following orthotopic transplantation. These tumors consist of large, pleiomorphic cells and resemble human MYC-driven MB at a molecular level. Notably, antagonists of PI3K/mTOR signaling, but not Hedgehog signaling, inhibit growth of tumor cells. These findings suggest that cerebellar stem cells can give rise to MYC-driven MB, and identify a novel model that can be used to test therapies for this devastating disease.

Publication Title

An animal model of MYC-driven medulloblastoma.

Alternate Accession IDs

E-GEOD-34126

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0