refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 120 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE6359
Murine model of decidulization and menstruation
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

A murine model that mimic the decidualization and regression observed in human was used to investigate the molecular mechanisms underlying the dynamic processes in endometrium. Ovariectomized mice were treated sequentially with steroid hormones and then, to induce decidualization, oil was injected into the uterine lumen. A process similar to menstruation was induced by hormone-withdrawal. The uterine tissues were collected at 4 time-points after the induction of decidualization.

Publication Title

Quantitative cellular and molecular analysis of the effect of progesterone withdrawal in a murine model of decidualization.

Alternate Accession IDs

E-GEOD-6359

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE18026
Analysis of chronic lymphocytic leukemia CLL cells and normal B cells
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We have analyzed 2 normal B cells isolated from peripheral blood and 5 CLL specimens with affy 133A microarray for expression.

Publication Title

Aberrant splicing of the E-cadherin transcript is a novel mechanism of gene silencing in chronic lymphocytic leukemia cells.

Alternate Accession IDs

E-GEOD-18026

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE100527
Identification of a human airway epithelial cell subpopulation with altered biophysical, molecular, and metastatic properties
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Lung cancers are documented to have remarkable intratumoral genetic heterogeneity. However, little is known about the heterogeneity of biophysical properties, such as cell motility, and its relationship to early disease pathogenesis and micrometastatic dissemination. In this study, we identified and selected a subpopulation of highly migratory premalignant pulmonary epithelial cells that were observed to migrate through microscale constrictions at up to 100-fold the rate of unselected cells. This enhanced migratory capacity was found to be Rac1-dependent and heritable, as evidenced by maintenance of the phenotype through multiple cell divisions continuing more than 8-weeks post-selection. The morphology of this lung epithelial subpopulation was characterized by increased cell protrusion intensity. In a murine model of micrometastatic seeding and pulmonary colonization, the motility-selected premalignant cells exhibit both enhanced survival in short term assays and enhanced outgrowth of premalignant lesions in longer term assays, thus overcoming important aspects of metastatic inefficiency. Overall, our findings indicate that among premalignant pulmonary epithelial cells, subpopulations with heritable motility-related biophysical properties exist, and these may explain micrometastatic seeding occurring early in the pathogenesis of lung cancer. Understanding, targeting, and preventing these critical biophysical traits and their underlying molecular mechanisms may provide a new approach to prevent metastatic behavior.

Publication Title

Identification of a Human Airway Epithelial Cell Subpopulation with Altered Biophysical, Molecular, and Metastatic Properties.

Alternate Accession IDs

E-GEOD-100527

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE13125
Identification of PU.1 target genes by expression profiling of PUER cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

PU.1 is a key transcription factor for macrophage differentiation. Novel PU.1 target genes were identified by mRNA profiling of PU.1-deficient progenitor cells (PUER) before and after PU.1 activation. We used two different types of Affymetrix DNA-microarrays (430 2.0 arrays and ST 1.0 exon arrays) to characterize the global PU.1-regulated transcriptional program underlying the early processes of macrophage differentiation.

Publication Title

Transcriptomic profiling identifies a PU.1 regulatory network in macrophages.

Alternate Accession IDs

E-GEOD-13125

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE42987
Hippocampal expression data from WT, KO, R270X, and G273X mice at 4 and 9 weeks
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Mecp2 loss-of-function has been associated with altered gene expression in many tissues. We characterized gene expression changes within the hippocampi of 3 different Mecp2 loss-of-function mouse models.

Publication Title

An AT-hook domain in MeCP2 determines the clinical course of Rett syndrome and related disorders.

Alternate Accession IDs

E-GEOD-42987

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP017325
Decoupling epigenetic and genetic effects through systematic analysis of gene position
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Classic ‘position effect’ experiments repositioned genes to the telomere to demonstrate that the epigenetic landscape can dramatically alter gene expression. Here we show that systematic gene knockout collections provide an exceptional resource for interrogating position effects, not only at the telomere but at every single genetic locus. Because deleted genes are replaced by the same reporter gene, interrogation of this reporter provides a sensitive probe into many different chromatin environments while controlling for genetic context. Using this approach we find that, whereas replacement of yeast genes with the kanMX marker does not perturb the chromatin landscape, differences due to gene position account for more than 35% of marker gene activity. We observe chromatin influences different from those reported previously, including an antagonistic interaction between histone H3 lysine 36 trimethylation (H3K36me3) and the Rap1 transcriptional activation site in kanMX that is mediated through a Set2-Rpd3-dependent pathway. This interaction explains why some yeast genes have been resistant to deletion and allows successful generation of these deletion strains using a modified transformation procedure. These findings demonstrate that chromatin regulation is not governed by a uniform ‘histone code’, but by specific interactions between chromatin and genetic factors. Overall design: Data included are RNA-Seq data for 4 heterzygous diploid yeast strains and diploid wild-type. Therea re three replicates for each heterzygous strain, and six replicates for wild-type.

Publication Title

Decoupling epigenetic and genetic effects through systematic analysis of gene position.

Alternate Accession IDs

GSE42554

Sample Metadata Fields

Subject

View Samples
accession-icon GSE62253
Molecular mechanism of silver nanoparticles in human intestinal cell line Caco-2
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Silver nanoparticles are used in consumer products like food contact materials, drinking water technologies and supplements, due to their antimicrobial properties. This leads to an oral uptake and exposure of intestinal cells. In contrast to other studies we found no apoptosis induction by surfactant coated silver nanoparticles in the intestinal cell model Caco-2 in a previous study, although the particles induced oxidative stress, morphological changes and cell death. Therefore, this study aimed to analyze the molecular mechanism of silver nanoparticles in Caco-2 cells. We used global gene expression profiling in differentiated Caco-2 cells, supported by verification of the microarray data by quantitative real time RT-PCR and microscopic analysis, impedance measurements and assays for apoptosis and oxidative stress. Our results revealed that the majority of surfactant coated silver nanoparticles are not taken up into differentiated Caco-2 cells. and probably affect the cells by outside-in signaling. They induce oxidative stress and have an influence on canonical pathways related to FAK, ILK, ERK, MAPK, integrins and adherence and tight junctions, thereby inducing transcription factors like AP1, NFB and NRF2, which mediate cellular reactions in response to oxidative stress and metal ions and induce changes in the cytoskeleton and cell-cell and cell-matrix contacts. The present data confirm the absence of apoptotic cell death. Non-apoptotic, necrotic cell death, especially in the intestine, can cause inflammation and influence the mucosal immune response.

Publication Title

Molecular mechanism of silver nanoparticles in human intestinal cells.

Alternate Accession IDs

E-GEOD-62253

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE49469
Oncogenic Ras inhibits IRF1 to promote viral oncolysis
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Oncolytic viruses exploit common molecular changes in cancer cells, which are not present in normal cells, to target and kill cancer cells. Ras transformation and defects in type I interferon (IFN)-mediated antiviral responses are known to be the major mechanisms underlying viral oncolysis. Previously, we demonstrated that oncogenic RAS/Mitogen-activated protein kinase kinase (Ras/MEK) activation suppresses the transcription of many IFN-inducible genes in human cancer cells, suggesting that Ras transformation underlies type I IFN defects in cancer cells. Here, we investigated how Ras/MEK downregulates IFN-induced transcription. By conducting promoter deletion analysis of IFN-inducible genes, namely guanylate-binding protein 2 and IFN gamma inducible protein 47 (Ifi47), we identified the IFN regulatory factor 1 (IRF1) binding site as the promoter region responsible for the regulation of transcription by MEK. MEK inhibition promoted transcription of the IFN-inducible genes in wild type mouse embryonic fibroblasts (MEFs), but not in IRF1/ MEFs, showing that IRF1 is involved in MEK-mediated downregulation of IFN-inducible genes. Furthermore, IRF1 protein expression was lower in RasV12 cells compared with vector control NIH3T3 cells, but was restored to equivalent levels by inhibition of MEK. Similarly, the restoration of IRF1 expression by MEK inhibition was observed in human cancer cells. IRF1 re-expression in human cancer cells caused cells to become resistant to infection by the oncolytic vesicular stomatitis virus strain. Together, this work demonstrates that Ras/MEK activation in cancer cells downregulates transcription of IFN-inducible genes by targeting IRF1 expression, resulting in increased susceptibility to viral oncolysis.

Publication Title

Oncogenic Ras inhibits IRF1 to promote viral oncolysis.

Alternate Accession IDs

E-GEOD-49469

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16798
Genes regulated after knock-down of Pirin in U937 cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Pirin (PIR) is a putative transcriptional regulator whose expression is silenced in cells bearing the AML1/ETO and PML/RAR leukemogenic fusion proteins and is significantly repressed in a large proportion of acute myeloid leukemias. PIR expression increases during in vitro myeloid differentiation of primary hematopoietic precursor cells, and ablation of PIR in the U937 myelomonocytic cell line or in murine primary hematopoietic precursor cells results in impairment of terminal myeloid differentiation.

Publication Title

Pirin downregulation is a feature of AML and leads to impairment of terminal myeloid differentiation.

Alternate Accession IDs

E-GEOD-16798

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE29788
Effect of emtine treatment on RNA expression and stablization of RNA otherwise degraded by NMD pathway in head and neck cell lines
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The data shows the effect of NMD inhbition on cell lines and the change in RNA transcripts. The data also shows comparison of non-transformed cells (tert kert) to a Head and Neck tumorigenic cell line SCC12.

Publication Title

Exon 11 skipping of E-cadherin RNA downregulates its expression in head and neck cancer cells.

Alternate Accession IDs

E-GEOD-29788

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0