refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 218 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE24207
mRNA analysis in different mouse tissues
  • organism-icon Mus musculus
  • sample-icon 73 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The functioning of a specific tissue depends on the expression pattern of the different genes. We used microarrays to compare gene expression across different murine tissues, to get a better understanding in the expression pattern and functioning of the different tissues. With this analysis, we were not only able to identify genes that were specifically expressed in a spicific tissue but, as important, we also identified genes that were specifically repressed in a tissue, compared to al the other analysed tissues.

Publication Title

Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation.

Alternate Accession IDs

E-GEOD-24207

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE24940
Transcription in adult mouse tissues
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We used Affymetrix Gene Arrays (1.0 ST) to compare gene expression across different murine tissues.

Publication Title

Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation.

Alternate Accession IDs

E-GEOD-24940

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18239
Expression data from JAK1 wild-type and JAK1 mutation-positive T cell acute lymphoblastic leukemia blasts
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Aberrant signal transduction contributes substantially to leukemogenesis. The Janus kinase 1 (JAK1) gene encodes a cytoplasmic tyrosine kinase that noncovalently associates with a variety of cytokine receptors and plays a nonredundant role in lymphoid cell precursor proliferation, survival, and differentiation. Somatic mutations in JAK1 occur in individuals with acute lymphoblastic leukemia (ALL). JAK1 mutations were more prevalent among adult subjects with the T cell precursor ALL, where they accounted for 18% of cases, and were associated with advanced age at diagnosis, poor response to therapy, and overall prognosis

Publication Title

ALL-associated JAK1 mutations confer hypersensitivity to the antiproliferative effect of type I interferon.

Alternate Accession IDs

E-GEOD-18239

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE14249
Genes induced by IL-9 in the colon of transgenic mice
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The aim of this work was to identify genes induced by IL-9 in the colon of IL-9-tarnsgenic mice (Tg5). Therefore, we performed a comprehensive study of the genes expressed in the colon of IL-9 transgenic and wild type FVB mice, taking advantage of the affymetrix microarray technology.

Publication Title

IL-9 promotes IL-13-dependent paneth cell hyperplasia and up-regulation of innate immunity mediators in intestinal mucosa.

Alternate Accession IDs

E-GEOD-14249

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP067644
Loss of mouse P2Y6 nucleotide receptor is associated with physiological macrocardia and amplified pathological cardiac hypertrophy
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

The study of the mechanisms leading to cardiac hypertrophy is essential to better understand cardiac development and regeneration. Pathological conditions such as ischemia or pressure overload can induce a release of extracellular nucleotides within the heart. We recently investigated the potential role of nucleotide P2Y receptors in cardiac development. We showed that adult P2Y4-null mice displayed microcardia resulting from defective cardiac angiogenesis. Here we show that loss of another P2Y subtype called P2Y6, a UDP receptor, was associated with a macrocardia phenotype and amplified pathological cardiac hypertrophy. Cardiomyocyte proliferation and size were increased in vivo in hearts of P2Y6-null neonates, resulting in enhanced post-natal heart growth. We then observed that loss of P2Y6 receptor enhanced pathological cardiac hypertrophy induced after isoproterenol injection. We identified an inhibitory effect of UDP on in vitro isoproterenol-induced cardiomyocyte hyperplasia and hypertrophy. The present study identifies mouse P2Y6 receptor as a regulator of cardiac development and cardiomyocyte function. P2Y6 receptor could constitute a therapeutic target to regulate cardiac hypertrophy. Overall design: WT and P2Y6 KO mice aged between 8 and 12 weeks were intraperitoneally injected with 50 mg/kg/day isoproterenol or saline solution, daily during 7 days, then hearts were harvested and weighted. Ventricles were then stored for RNA extraction.

Publication Title

Loss of Mouse P2Y6 Nucleotide Receptor Is Associated with Physiological Macrocardia and Amplified Pathological Cardiac Hypertrophy.

Alternate Accession IDs

GSE76215

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE59143
Expression data from normal and transplanted islets in non-pregnant and pregnant condition
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

ABSTRACT:Pregnancy requires a higher functional beta cell mass and this is associated with profound changes in the gene expression profile of pancreatic islets. Taking Tph1 as a sensitive marker for pregnancy-related islet mRNA expression in female mice, we previously identified prolactin receptors and placental lactogen as key signalling molecules. Since beta cells from male mice also express prolactin receptors, the question arose whether male and female islets have the same phenotypic resilience at the mRNA level during pregnancy. We addressed this question in vitro, by using islet tissue culture with placental lactogen and in vivo, by transplanting male or female islets into female acceptor mice. Additionally, the islet mRNA expression of pregnant prolactin receptor deficient mice was compared with that of their pregnant wild-type littermates. When cultured with placental lactogen, or transplanted in female recipients that became pregnant (day 12.5), male islets induced the islet pregnancy gene signature, which we defined as the 12 highest induced genes in non-transplanted female islets at day 12.5 of pregnancy. In addition, serotonin immunoreactivity was also induced in these male transplanted islets at day 12.5 of pregnancy. In order to investigate the importance of prolactin receptors in these mRNA changes we used a prolactin receptor deficient mouse model. For the 12 genes of the signature, which are highly induced in control pregnant mice, no significant induction of mRNA transcripts was found at day 9.5 of pregnancy. Together, our results support the key role of placental lactogen as a circulating factor that can trigger the pregnancy mRNA profile in male and female beta cells.

Publication Title

Prolactin receptors and placental lactogen drive male mouse pancreatic islets to pregnancy-related mRNA changes.

Alternate Accession IDs

E-GEOD-59143

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE59141
Expression data from islets of non-pregnant and pregnant PRLR+/+ and PRLR-/- mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

ABSTRACT:Pregnancy requires a higher functional beta cell mass and this is associated with profound changes in the gene expression profile of pancreatic islets. Taking Tph1 as a sensitive marker for pregnancy-related islet mRNA expression in female mice, we previously identified prolactin receptors and placental lactogen as key signalling molecules. Since beta cells from male mice also express prolactin receptors, the question arose whether male and female islets have the same phenotypic resilience at the mRNA level during pregnancy. We addressed this question in vitro, by using islet tissue culture with placental lactogen and in vivo, by transplanting male or female islets into female acceptor mice. Additionally, the islet mRNA expression of pregnant prolactin receptor deficient mice was compared with that of their pregnant wild-type littermates. When cultured with placental lactogen, or transplanted in female recipients that became pregnant (day 12.5), male islets induced the islet pregnancy gene signature, which we defined as the 12 highest induced genes in non-transplanted female islets at day 12.5 of pregnancy. In addition, serotonin immunoreactivity was also induced in these male transplanted islets at day 12.5 of pregnancy. In order to investigate the importance of prolactin receptors in these mRNA changes we used a prolactin receptor deficient mouse model. For the 12 genes of the signature, which are highly induced in control pregnant mice, no significant induction of mRNA transcripts was found at day 9.5 of pregnancy. Together, our results support the key role of placental lactogen as a circulating factor that can trigger the pregnancy mRNA profile in male and female beta cells.

Publication Title

Prolactin receptors and placental lactogen drive male mouse pancreatic islets to pregnancy-related mRNA changes.

Alternate Accession IDs

E-GEOD-59141

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE2379
Hypopharyngeal_cancer_transcriptome
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95A Array (hgu95a)

Description

Gene expression analysis of a unique HNSCC (Head and Neck Squamous Cell Carcinoma) localization, the hypopharynx. Four normal and 34 tumor samples were analysed using Affymetrix HG-U95A microarrays containing probe sets representing ~12650 distinct transcription features.

Publication Title

Identification of genes associated with tumorigenesis and metastatic potential of hypopharyngeal cancer by microarray analysis.

Alternate Accession IDs

E-GEOD-2379

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16879
Mucosal expression profiling in patients with inflammatory bowel disease before and after first infliximab treatment
  • organism-icon Homo sapiens
  • sample-icon 132 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used microarrays to identify mucosal gene signatures predictive of response to infliximab (IFX) in patients with inflammatory bowel disease (IBD) and to gain more insight into the pathogenesis of IBD.

Publication Title

Mucosal gene expression of antimicrobial peptides in inflammatory bowel disease before and after first infliximab treatment.

Alternate Accession IDs

E-GEOD-16879

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE48959
Mucosal expression profiling in (un)inflamed colon of patients with ulcerative colitis (UC)
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrated miRNA and mRNA expression profiling in inflamed colon of patients with ulcerative colitis.

Alternate Accession IDs

E-GEOD-48959

Sample Metadata Fields

Specimen part, Disease

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0