refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 49 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE39843
Expression data of cystic fibrosis and non-cystic fibrosis airway cell lines under oxidative stress
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

CF's physiopathology is poorly explained by the mutation alone. The oxydative stress could be a major factor of this illness . Study its impact on transcriptome's CF cell line could be ameliorate our understanding of the evolution of cystic fibrosis.

Publication Title

Oxidative stress modulates the expression of genes involved in cell survival in ΔF508 cystic fibrosis airway epithelial cells.

Alternate Accession IDs

E-GEOD-39843

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE28315
Gene expression pattern of skin biopsies of epidermolysis bullosa simplex patients in comparison with control subjects
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Tha altered biological pathways in Epidermolysis bulloda simplex, a rare monogenetic skin disease, have not been well characterized. Thus, the goal of this study is to characterize the expression profile of EBS patients compared with normal subjects using genomic expression analyses. Microarray analyses were performed with RNA isolated from skin biopsies. Robust multiarray analysis (RMA) normalization and Smyths moderated t test were used to select differentially expressed genes. Expression profiling comparisons show that 28 genes are differentially expressed in EBS patients compared to control subjects and 41 genes in EBS-DM compared to their matched controls. Nine genes involved in fatty acid metabolism and 2 genes in epidermal keratinisation are common altered expressed genes between the two subgroups. These two biological pathways contribute both to the formation of the cell envelope barrier and seem to be defective in the severe EBS phenotype. This study demonstrates, for the first time, the relevance of metabolic cluster, specifically fatty acid metabolism in EBS biology. Difference of expression for three (AWAT2, ELOVL , and SPRR4 ) of the five selected genes were validated using real-time reverse transcriptionpolymerase chain reaction. To our knowledge, the distinctive pattern of gene expression that characterizes EBS versus healthy skin tissue has never been reported.

Publication Title

Expression signature of epidermolysis bullosa simplex.

Alternate Accession IDs

E-GEOD-28315

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon SRP133401
Expression profiling by RNA-Seq of breast cancer samples from patients in walnut-consuming and control groups
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

Consumption of walnuts has slowed breast cancer growth and/or reduced the risk of breast cancer in mice. The significantly reduced mean tumor size or numbers of tumors was associated with changing the expressions of many genes that are associated with cancer growth, survival and metastasis. Many women treated for breast cancer are interested in reducing the risk for recurrence. The study was a non-placebo, two-arm, clinical trial. Women with lumps large enough for research and pathology biopsies were recruited to the trial. One or two additional biopsies were taken for gene expression analyses using next generation RNA Sequencing methods. The subjects randomized to the walnut group immediately began to consume 2 ounces of walnuts per day until follow-up surgery, if surgery were needed. At follow up surgery, additional biopsies were taken from the surgically removed, cancerous tissue for additional gene expression analyses. Changes in gene expression compared to baseline were determined in tumors of each individual woman in walnut-consuming and control groups. Overall design: Gene expression profiles of two samples from each of ten breast cancer patients were obtained via RNA-Seq in a 2x50bp paired-end design. The first sample was obtained from biopsy; the second sample was taken at the time of surgery 2-3 weeks later. Five patients consumed two one-ounce packets of walnuts daily between the biopsy and surgery, while the other five remained on their regular diet.

Publication Title

Dietary walnut altered gene expressions related to tumor growth, survival, and metastasis in breast cancer patients: a pilot clinical trial.

Alternate Accession IDs

GSE111073

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE75834
Gene expression profile comparison of DC subsets
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To evaluate gene expression profiles on different dendritic cell subsets isolated from spleens of mice

Publication Title

CD28 Deficiency Enhances Type I IFN Production by Murine Plasmacytoid Dendritic Cells.

Alternate Accession IDs

E-GEOD-75834

Sample Metadata Fields

Sex

View Samples
accession-icon GSE38614
Hierarchical regulation in a KRAS pathway-dependent transcriptional network revealed by a reverse-engineering approach
  • organism-icon Rattus norvegicus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS.

Alternate Accession IDs

E-GEOD-38614

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE38584
Hierarchical regulation in a KRAS pathway-dependent transcriptional network revealed by a reverse-engineering approach (7TF and control)
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

RAS mutations are highly relevant for progression and therapy response of human tumours, but the genetic network that ultimately executes the oncogenic effects is poorly understood. Here we used a reverse-engineering approach in an ovarian cancer model to reconstruct KRAS oncogene-dependent cytoplasmic and transcriptional networks from perturbation experiments based on gene silencing and pathway inhibitor treatments. We measured mRNA and protein levels in manipulated cells by microarray, RT-PCR and Western Blot analysis, respectively. The reconstructed model revealed complex interactions among the transcriptional and cytoplasmic components, some of which were confirmed by double pertubation experiments. Interestingly, the transcription factors decomposed into two hierarchically arranged groups. To validate the model predictions we analysed growth parameters and transcriptional deregulation in the KRAS-transformed epithelial cells. As predicted by the model, we found two functional groups among the selected transcription factors. The experiments thus confirmed the predicted hierarchical transcription factor regulation and showed that the hierarchy manifests itself in downstream gene expression patterns and phenotype.

Publication Title

Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS.

Alternate Accession IDs

E-GEOD-38584

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE38585
Hierarchical regulation in a KRAS pathway-dependent transcriptional network revealed by a reverse-engineering approach (RAS-ROSE and ROSE with siRNA)
  • organism-icon Rattus norvegicus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

RAS mutations are highly relevant for progression and therapy response of human tumours, but the genetic network that ultimately executes the oncogenic effects is poorly understood. Here we used a reverse-engineering approach in an ovarian cancer model to reconstruct KRAS oncogene-dependent cytoplasmic and transcriptional networks from perturbation experiments based on gene silencing and pathway inhibitor treatments. We measured mRNA and protein levels in manipulated cells by microarray, RT-PCR and Western Blot analysis, respectively. The reconstructed model revealed complex interactions among the transcriptional and cytoplasmic components, some of which were confirmed by double pertubation experiments. Interestingly, the transcription factors decomposed into two hierarchically arranged groups. To validate the model predictions we analysed growth parameters and transcriptional deregulation in the KRAS-transformed epithelial cells. As predicted by the model, we found two functional groups among the selected transcription factors. The experiments thus confirmed the predicted hierarchical transcription factor regulation and showed that the hierarchy manifests itself in downstream gene expression patterns and phenotype.

Publication Title

Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS.

Alternate Accession IDs

E-GEOD-38585

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP165272
Quantifying post-transcriptional regulation in the development of Drosophila melanogaster [devel]
  • organism-icon Drosophila melanogaster
  • sample-icon 50 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Proteome and transcriptome often show poor correlation, hindering the system-wide analysis of post-transcriptional regulation. Here, the authors study proteome and transcriptome dynamics during Drosophila embryogenesis and present basic mathematical models describing the temporal regulation of most protein-RNA pairs. Overall design: Whole embryos of Drosophila melanogaster measured at 14 time points during the first 20h of development (0h, 1h, 2h, 3h, 4h, 5h, 6h, 8h, 10h, 12h, 14h, 16h, 18h, 20h). Each sample was measured in biological quadruplicates. RNAseq samples correspond to proteome measurements deposited in ProteomeXchange as PXD005713.

Publication Title

Quantifying post-transcriptional regulation in the development of Drosophila melanogaster.

Alternate Accession IDs

GSE121160

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE55925
Population Structure and Comparative Genome Hybridization of European flor yeast reveal a unique group of Saccharomyces cerevisiae strains with few gene duplications in their genome
  • organism-icon Saccharomyces cerevisiae x saccharomyces kudriavzevii, Saccharomyces cerevisiae
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Wine biological aging is a wine making process used to produce specific beverages in several countries in Europe, including Spain, Italy, France, and Hungary. This process involves the formation of a velum at the surface of the wine. Here, we present the first large scale comparison of all European flor strains involved in this process. We inferred the population structure of these European flor strains from their microsatellite genotype diversity and analyzed their ploidy. We show that almost all of these flor strains belong to the same cluster and are diploid, except for a few Spanish strains. Comparison of the array hybridization profile of six flor strains originating from these four countries, with that of three wine strains did not reveal any large segmental amplification. Nonetheless, some genes, including YKL221W/MCH2 and YKL222C, were amplified in the genome of four out of six flor strains. Finally, we correlated ICR1 ncRNA and FLO11 polymorphisms with flor yeast population structure, and associate the presence of wild type ICR1 and a long Flo11p with thin velum formation in a cluster of Jura strains. These results provide new insight into the diversity of flor yeast and show that combinations of different adaptive changes can lead to an increase of hydrophobicity and affect velum formation.

Publication Title

Population structure and comparative genome hybridization of European flor yeast reveal a unique group of Saccharomyces cerevisiae strains with few gene duplications in their genome.

Alternate Accession IDs

E-GEOD-55925

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12581
Gene expression profiles of the lymphoid and non-lymphoid leukemias induced by the Graffi murine leukemia retrovirus
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We used the microarrays to obtain the cancerous signatures of T-cell, B-cell, erythroid and megakaryoblastic leukemias in mice.

Publication Title

Gene profiling of the erythro- and megakaryoblastic leukaemias induced by the Graffi murine retrovirus.

Alternate Accession IDs

E-GEOD-12581

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0