refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 163 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE45838
Knock-down of BCL6 expression in human Diffuse Large B-Cell Lymphoma cell lines
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This dataset was used to benchmark the Virtual Inference of Protein-activity by Regulon Readout algorithm (VIPER). Despite recent advances in molecular profiling, proteome-wide assessment of protein activity in individual samples remains a highly elusive target. In stark contrast, protein activity quantitation is increasingly critical to the dissection of key regulatory processes and to the elucidation of biologically relevant mechanisms. Importantly, its value extends to the study of drug activity, as most small molecules inhibit activity of their cognate protein substrates without affecting the proteins or associated mRNAs abundance.

Publication Title

Functional characterization of somatic mutations in cancer using network-based inference of protein activity.

Alternate Accession IDs

E-GEOD-45838

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE6285
Expression data from brains of mice fed four different diets
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Beyond the DNA sequence difference between humans and closely related apes, there are large differences in the environments that these species experience. One prominent example for this is diet. The human diet diverges from those of other primates in various aspects, such as having a high calorie and protein content, as well as being cooked. Here, we used a laboratory mouse model to identify gene expression differences related to dietary differences.

Publication Title

Human and chimpanzee gene expression differences replicated in mice fed different diets.

Alternate Accession IDs

E-GEOD-6285

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE6297
Expression data from livers of mice fed four different diets
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Beyond the DNA sequence difference between humans and closely related apes, there are large differences in the environments that these species experience. One prominent example for this is diet. The human diet diverges from those of other primates in various aspects, such as having a high calorie and protein content, as well as being cooked. Here, we used a laboratory mouse model to identify gene expression differences related to dietary differences.

Publication Title

Human and chimpanzee gene expression differences replicated in mice fed different diets.

Alternate Accession IDs

E-GEOD-6297

Sample Metadata Fields

Sex, Age

View Samples
accession-icon E-AFMX-1
Transcription profiling of human, chimp and mouse brain
  • organism-icon Macaca mulatta, Mus caroli, Mus musculus, Pan troglodytes, Pongo pygmaeus, Homo sapiens, Mus spretus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2), Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Microarray technologies allow the identification of large numbers of expression differences within and between species. Although environmental and physiological stimuli are clearly responsible for changes in the expression levels of many genes, it is not known whether the majority of changes of gene expression fixed during evolution between species and between various tissues within a species are caused by Darwinian selection or by stochastic processes. We find the following: (1) expression differences between species accumulate approximately linearly with time; (2) gene expression variation among individuals within a species correlates positively with expression divergence between species; (3) rates of expression divergence between species do not differ significantly between intact genes and expressed pseudogenes; (4) expression differences between brain regions within a species have accumulated approximately linearly with time since these regions emerged during evolution. These results suggest that the majority of expression differences observed between species are selectively neutral or nearly neutral and likely to be of little or no functional significance. Therefore, the identification of gene expression differences between species fixed by selection should be based on null hypotheses assuming functional neutrality. Furthermore, it may be possible to apply a molecular clock based on expression differences to infer the evolutionary history of tissues.

Publication Title

A neutral model of transcriptome evolution.

Alternate Accession IDs

None

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE18069
Gene and miRNA expression data from primate postnatal brain in prefrontal cortex: time course
  • organism-icon Macaca mulatta, Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain.

Alternate Accession IDs

E-GEOD-18069

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE17757
Gene expression data from primate postnatal brain in prefrontal cortex: time course
  • organism-icon Macaca mulatta, Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Gene expression changes determine functional differentiation during development and are associated with functional decline during aging. While developmental changes are tightly regulated, regulation of aging changes is not well established. To assess the regulatory basis of age-related changes and investigate the mechanism of regulatory transition between development and aging, we measured mRNA and microRNA expression patterns in brains (superior frontal gyrus) of humans and rhesus macaques over the entire species lifespan. We find that in both species, developmental and aging changes overlap in the course of lifetime with many changes found at the late age initiating in early childhood.

Publication Title

MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain.

Alternate Accession IDs

E-GEOD-17757

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP162879
The Regulation of IFN Type I Pathway Related Genes RSAD2 and ETV7 Specifically Indicate Antibody-Mediated Rejection After Kidney Transplantation
  • organism-icon Homo sapiens
  • sample-icon 46 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We performed total RNA-Seq and compared expression levels of genes of whole blood cells isolated from patients after kidney transplantation with stable graft function, antibody mediated- and t cell mediated graft rejection. Overall design: Whole blood cells were isolated from 6 patients with stable graft function, 6 patients with histologically verified antibody mediated graft rejection episode and 4 patients with histologically verified T cell mediated graft rejection after kidney transplantation. Total RNA was extracted and cDNA libraries for total RNA sequencing were generated using “TruSeq® Stranded Total RNA Library” kit (Illumina, San Diego, CA, USA).

Publication Title

The regulation of interferon type I pathway-related genes RSAD2 and ETV7 specifically indicates antibody-mediated rejection after kidney transplantation.

Alternate Accession IDs

GSE120649

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP034737
Gene expression profiling in an induced pluripotent stem cell model of the developing human telencephalon: effect of heat shock and its potential impact on the development of neuropsychiatric disorders
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Schizophrenia (SZ) and autism spectrum disorders (ASD) are highly heritable neuropsychiatric/neurodevelopmental disorders, although environmental factors, such as maternal immune activation (MIA), play a role as well. Inflammatory cytokines appear to mediate the effects of MIA on neurogenesis and behavior in animal models. However, drugs and cytokines that trigger MIA can also induce a febrile reaction, which could have independent effects on neurogenesis through heat shock (HS)-regulated cellular stress pathways. However, this has not been well-studied. As a first step towards addressing the role of fever in MIA, we used a recently described model of human brain development in which induced pluripotent stem cells (iPSCs) differentiate into 3-dimensional neuronal aggregates that resemble a first trimester telencephalon. RNA-seq was carried out on aggregates that were heat shocked at 39oC for 24 hours, along with their control partners maintained at 37oC. Overall, 186 genes showed significant differences in expression following HS (p<0.05), including known HS-inducible genes, as expected, as well as those coding for NGFR and a number of SZ and ASD candidates, including SMARCA2, DPP10, ARNT2, AHI1 and ZNF804A. The degree to which the expression of these genes decrease or increase during HS is similar to that found in copy loss and copy gain CNVs, although the effects of HS are likely to be more transient. Overall design: RNA-seq was carried out on neuronal aggregates as described by Mariani et al. with slight modification (PMID:22761314). For the heat shock experiment, a group of 49 day old aggregates was placed in an incubator set at 39C for 24 hours, while control sets of aggregates were maintained at 37C. The incubator conditions were otherwise unchanged. After detaching the aggregates, total cellular RNA was isolated using the miRNeasy Kit (Qiagen) according to the manufacturer's protocol. Lastly, RNAseq profiles of HS and Control were compared

Publication Title

Heat shock alters the expression of schizophrenia and autism candidate genes in an induced pluripotent stem cell model of the human telencephalon.

Alternate Accession IDs

GSE53667

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP061192
Reduced CYFIP1 in human neural progenitors as 15q11.2 deletion model: donor specific dysregulation of schizophrenia/epilepsy genes
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Deletions at 15q11.2 have been established to increase risk for multiple neurodevelopmental disorders (NDDs) including schizophrenia and epilepsy, yet show variable expressivity between individuals. To investigate the potential role of CYFIP1, a gene within the locus, we carried out knockdown experiments in human neural progenitor cells derived from 15q11.2 neutral induced pluripotent stem cells. Transcriptional profiling and cellular assays support a prominent role for CYFIP1 in cytoskeletal remodeling across all lines examined. Validating the utility of this model for study of disease, genes implicated in schizophrenia and epilepsy but not other disorders or traits unrelated to the deletion, were enriched among mRNAs dysregulated following knockdown. Importantly, and consistent with the variable expressivity of 15q11.2 deletions, the magnitude of disease-related effects varied between donor lines. Towards mechanisms, FMRP targets and synaptic genes were overrepresented among dysregulated mRNAs and as such may contribute to the schizophrenia and epilepsy effects we observe. Further model validation, and new candidate epilepsy genes, comes from machine-learning analyses showing a striking similarity between a subset of dysregulated transcripts and well-established epilepsy genes. Results provide support for an important contribution of CYFIP1 in 15q11.2 mediated risk for NDDs and demonstrate that disease-related biological signatures are evident prior to neuronal differentiation. This new human model of disease will be useful in identifying compounds that could ameliorate outcomes in deletion carriers. Overall design: Investigation of CYFIP1 shRNA knockdown in three neural progenitor cell lines derived from induced pluripotent stem cells (3 control samples and 3 knockdown samples analyzed in each line)

Publication Title

Reduced CYFIP1 in Human Neural Progenitors Results in Dysregulation of Schizophrenia and Epilepsy Gene Networks.

Alternate Accession IDs

GSE70935

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP035417
ZNF804A transcriptome networks in differentiating human neurons derived from induced pluripotent stem cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The goal of this project is to study transcriptome change by knocking down ZNF804A, a schizophrenia and bipolar disorder candidate gene, in early neurons derived from iPSCs. Overall design: Neural progenitor cells (NPCs) were developed from human induced pluripotent stem cells (iPSCs) and transduced by two independent shRNA vectors targeting ZNF804A, a schizophrenia and bipolar disorder candidate gene. After recovery and selection in puromycin, neuronal differentiation was induced. After 14 days, RNA was recovered and analyzed by RNA-seq. The expression profiles were compared with NPCs that were transduced with scrambled control vectors. This corresponds to controls 1-3 and KD 1-3, which was carried out on a male iPSC line. Scramble 1 and 2 and KD1 and 2 are technical replicates. Scrambled 3 and KD 3 were carried out on an independent NPC culture. For control 4 and KD4, neuronal differentiation was induced, and on day 10 the cells were transduced with the same ZNF804A KD and scrambled control vectors used for scrambled control 3 and KD3. In addition, this last set was carried out on a female iPSC line

Publication Title

ZNF804A Transcriptional Networks in Differentiating Neurons Derived from Induced Pluripotent Stem Cells of Human Origin.

Alternate Accession IDs

GSE54112

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0