refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 4 of 4 results
Sort by

Filters

Organism

Technology

Platform

accession-icon SRP051077
RNA-seq profiling of Hoxa2/Hoxb2 mutants versus wild type in Math1 positive cells from the Cochlear Nucleus
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Differential gene expression was analyzed for FACS sorted Math1::Cre; ROSA-tdTomato from hand dissected cochlear nuclei of wild type and Hoxa2/Hoxb2 mutant mice Overall design: In order to investigate the role of Hoxa2 and Hoxb2 transcription factors in a subset of cells of the cochlear nucleus, we generated double conditional knock-out by crossing the deleter line Math1::Cre crossed with Rosa tdTomato; Hoxa2fl/fl; Hoxb2fl/fl and Rosa tdTomato wild type background. FACS sorted cells from hand dissected cochlear nuclei were than processed and RNA-seq performed (see extract protocol and library construction protocol).

Publication Title

Hox2 Genes Are Required for Tonotopic Map Precision and Sound Discrimination in the Mouse Auditory Brainstem.

Alternate Accession IDs

GSE64092

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP149567
Oncogenic KRAS(G12V) and BRAF(V600E) in intestinal organoids
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Goals of the study was to compare transcripional and phenotypic response of mouse intestinal organoid cultures to the KRAS(G12V) or BRAF(V600E)oncogenes. Overall design: Two biological replicates of organoids with transgenic luc-tdTomato, KRAS(G12V)-tdTomato, BRAF(V600E)-tdTomato were analysed by RNA-Seq By comparing 7-10 x 10E7 50bp paired end reads per library we identify transcriptional alterations in the intestinal epithelium following expression of each oncogene

Publication Title

Cell type-dependent differential activation of ERK by oncogenic KRAS in colon cancer and intestinal epithelium.

Alternate Accession IDs

GSE115234

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE6054
Monocytes of patients with familial hypercholesterolemia show alterations in cholesterol metabolism
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: Elevated plasma cholesterol promotes the formation of atherosclerotic lesions in which monocyte-derived lipid-laden macrophages are frequently found. To analyze, if circulating monocytes already show increased lipid content and differences in lipoprotein metabolism, we compared monocytes from patients with Familial Hypercholesterolemia (FH) with those from healthy individuals.

Publication Title

Monocytes of patients with familial hypercholesterolemia show alterations in cholesterol metabolism.

Alternate Accession IDs

E-GEOD-6054

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon SRP050397
Defective removal of ribonucleotides from DNA promotes systemic autoimmunity
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Constitutive low level DNA damage in RNASEH2 deficiency is linked to innate immune activation. Hierarchical clustering of over 16000 transcripts revealed remarkably similar profiles in patients with lupus erythematosus and patients with AGS with up-regulation of genes involved in DNA damage signaling and type I-IFN signaling. Overall design: Comparison of transcriptional profiles of native RNASEH2-deficient patient fibroblasts with wild type cells.

Publication Title

Defective removal of ribonucleotides from DNA promotes systemic autoimmunity.

Alternate Accession IDs

GSE63755

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0