refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 465 results
Sort by

Filters

Organism

Technology

Platform

accession-icon SRP064266
YY1 plays an essential role at all stages of B cell differentiation [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

YY1 is a ubiquitously expressed transcription factor that has been demonstrated to be essential for pro-B cell development. However, the role of YY1 in other B cell populations has never been investigated. It has been proposed that YY1 is a key regulator for the germinal center B cell program since the YY1 motif was present in much higher frequency in germinal center B cell signature genes than signature genes of other B cell subsets. Indeed, in accord with this prediction, we demonstrated that deletion of YY1 by Cg1-Cre completely prevented differentiation of naïve B cells into germinal center B cells and plasma cells after antigen stimulation. To determine if YY1 was also required for the differentiation of other B cell populations, we deleted YY1 with CD19-Cre and found that all peripheral B cell subsets including B1 B cells require YY1 for their differentiation. By deleting YY1 acutely with ER-Cre, we demonstrated that all B cell subsets require YY1 for their maintenance. ChIP-seq shows that YY1 predominantly binds to promoters, and pathway analysis of the genes which bind YY1 show that they are enriched in ribosomal functions, mitochondrial functions such as bioenergetics, and functions related to transcription, such as mRNA splicing, metabolism of RNA. By RNA-seq analysis of differentially expressed genes, we demonstrated that YY1 normally activates genes involved in mitochondrial bioenergetics, while it normally downregulates genes involved in transcription, mRNA splicing, NF-kB signaling pathways, AP-1 transcription factor network, chromatin remodeling, cytokine signaling pathways, cell adhesion, cell proliferation and c-Myc targets. Overall design: Total RNA was prepared from RAG-/-pro-B cells, RAG-/-YY1f/f x mb1-Cre pro-B cells, RAG-/- µ+ pre-B cells, C57BL/6 follicular B cells, and C57BL/6 GC B cells. RNA was extracted using TRIzol (Life Technologies) and genomic DNA was eliminated using the genomic DNA wipeout buffer in the QuantiTect Reverse transcription kit (Qiagen). A final purification of the RNA was performed with the RNeasy kit (Qiagen). Ribosomal RNA was eliminated using Ribo-Zero Magnetic Gold Kit (Illumina).RNA samples were submitted to the Next Generation Sequencing Core, where they were processed with the NEBNext Ultra Directional RNA Library Prep Kit for Illumina and sequenced on the Illumina HiSeq. Three independent RNA-seq samples were used for RAG-/- pro-B and RAG-/- YY1f/f x mb1-Cre pro-B cells, and two samples for the other cell types.

Publication Title

YY1 plays an essential role at all stages of B-cell differentiation.

Alternate Accession IDs

GSE73532

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE4324
Sex Differences in Response to Plasmodium chabaudi Infection: Involvement of Gonadal Steroids
  • organism-icon Mus musculus
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

The goal of this study was to examine whether immune responses to Plasmodium chabaudi infection differ between the sexes and are altered by the presence of gonadal steroids. Gonadally-intact males were more likely than intact females to die following P. chabaudi infection, exhibit slower recovery from infection-associated weight loss, hypothermia, and anemia, have reduced IFN-associated gene expression and IFN production during peak parasitemia, and produce less antibody during the recovery phase of infection. Gonadectomy of male and female mice altered these sex-associated differences, suggesting that sex steroid hormone, in particular androgens and estrogens, may modulate immune responses to infection.

Publication Title

Involvement of gonadal steroids and gamma interferon in sex differences in response to blood-stage malaria infection.

Alternate Accession IDs

E-GEOD-4324

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE49629
Large-scale hypomethylated blocks associated with Epstein-Barr virus-induced B-cell immortalization
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Large-scale hypomethylated blocks associated with Epstein-Barr virus-induced B-cell immortalization.

Alternate Accession IDs

E-GEOD-49629

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE49628
Large-scale hypomethylated blocks associated with Epstein-Barr virus-induced B-cell immortalization [Expression Array]
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To determine what DNA methylation and gene expression changes occur following EBV transformation. B-cells were isolated from 3 donors. Resting, CD40 activated and EBV transfromed cells from each donor was analyzed. Each sample was assayed using Affymetrix expression arrays and whole genome bisulfite sequenicng. Additional time points during transformation and activation were sequenced as well, but not assayed for expression.

Publication Title

Large-scale hypomethylated blocks associated with Epstein-Barr virus-induced B-cell immortalization.

Alternate Accession IDs

E-GEOD-49628

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE14051
Expression signatures and cytogenetic aberrations in HPV16 E6, E7 and E6/E7-positive immortalized human epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Identification of genetic/cytogenetic alterations and differentially expressed cellular genes in HPV16 E6, E7 and E6/E7 positive human foreskin keratinocytes

Publication Title

Complementation of non-tumorigenicity of HPV18-positive cervical carcinoma cells involves differential mRNA expression of cellular genes including potential tumor suppressor genes on chromosome 11q13.

Alternate Accession IDs

E-GEOD-14051

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14052
Differentially expressed cellular genes in non-tumorigenic and tumorigenic HPV18 positive HeLa x fibroblast hybrid cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Identification of genes differentially expressed in tumorigenic compared to non-tumorigenic, HPV18 positive cells

Publication Title

Complementation of non-tumorigenicity of HPV18-positive cervical carcinoma cells involves differential mRNA expression of cellular genes including potential tumor suppressor genes on chromosome 11q13.

Alternate Accession IDs

E-GEOD-14052

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE40377
Microarray profiling of WT or PDE10A KO mice treated with vehicle or a PDE10 inhibitor
  • organism-icon Mus musculus
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Inhibition of phosphodiesterase 10A (PDE10A) promotes cyclic nucleotide signaling, increases striatal activation, and decreases behavioral activity. Enhanced cyclic nucleotide signaling is a well established route to producing changes in gene expression. We hypothesized that chronic suppression of PDE10A activity would have significant effects on gene expression in the striatum. A comparison of the expression profile of PDE10A knockout (KO) mice and wild-type mice after chronic PDE10A inhibition revealed altered expression of 19 overlapping genes with few significant changes outside the striatum or after administration of a PDE10A inhibitor to KO animals. Chronic inhibition of PDE10A produced up-regulation of mRNAs encoding genes that included prodynorphin, synaptotagmin10, phosphodiesterase 1C, glutamate decarboxylase 1, and diacylglycerol O-acyltransferase and a down-regulation of mRNAs encoding choline acetyltransferase and Kv1.6, suggesting long-term suppression of the PDE10A enzyme is consistent with altered striatal excitability and potential utility as a antipsychotic therapy. In addition, up-regulation of mRNAs encoding histone 3 (H3) and down-regulation of histone deacetylase 4, follistatin, and claspin mRNAs suggests activation of molecular cascades capable of neuroprotection. We used lentiviral delivery of cAMP response element (CRE)-luciferase reporter constructs into the striatum and live animal imaging of 2-{4-[-pyridin-4-yl-1-(2,2,2-trifluoro-ethyl)-1H-pyrazol-3-yl]-phenoxymethyl}-quinoline succinic acid (TP-10)-induced luciferase activity to further demonstrate PDE10 inhibition results in CRE-mediated transcription. Consistent with potential neuroprotective cascades, we also demonstrate phosphorylation of mitogen- and stress-activated kinase 1 and H3 in vivo after TP-10 treatment. The observed changes in signaling and gene expression are predicted to provide neuroprotective effects in models of Huntington's disease.

Publication Title

Chronic suppression of phosphodiesterase 10A alters striatal expression of genes responsible for neurotransmitter synthesis, neurotransmission, and signaling pathways implicated in Huntington's disease.

Alternate Accession IDs

E-GEOD-40377

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE13878
Widespread regulation of gene expression by the histone acetyltransferase dTip60
  • organism-icon Drosophila melanogaster
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

We used microarrays to detail the global gene expression changes following RNAi knock-down of dTip60 in Drosophila SL2 cells

Publication Title

Widespread regulation of gene expression in the Drosophila genome by the histone acetyltransferase dTip60.

Alternate Accession IDs

E-GEOD-13878

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE75824
Expression data from pam48 (mterf6-1) mutants
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Of the members of mitochondrial transcription termination factors (mTERFs) found in metazoans and plants known to regulate organellar gene expression at various levels, plant mTERF6 promotes maturation of a tRNA

Publication Title

Definition of a core module for the nuclear retrograde response to altered organellar gene expression identifies GLK overexpressors as gun mutants.

Alternate Accession IDs

E-GEOD-75824

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7271
Sex differences in gene expression profiles during hantavirus infection of rats
  • organism-icon Rattus norvegicus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Gene expression profiles were examined in whole lung tissue collected from male and female Long-Evans rats at different time points after inoculation with Seoul virus (i.e., the species-specific hantavirus that infects Norway rats)

Publication Title

Sex differences in the recognition of and innate antiviral responses to Seoul virus in Norway rats.

Alternate Accession IDs

E-GEOD-7271

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0