refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 70 results
Sort by

Filters

Organism

Technology

Platform

accession-icon SRP027011
In search of epigenetic marks in testes and sperm cells of differentially fed boars [RNA-Seq]
  • organism-icon Sus scrofa
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We investigated the nutritional effects on gene expression in sperm cells of F0 boars from a three generation Large White pig feeding experiment. A group of experimental (E) F0 boars were fed a standard diet supplemented with high amounts of methylating micronutrients whereas a control (C) group of F0 boars received a standard diet. These differentially fed F0 boars sired F1 boars which then sired 60 F2 pigs which were investigated in a previous study. The aim of this study was to investigate if the nutrition affects gene expression in sperm cells of differentially fed boars and thus carry information in the form of RNA molecules to the next generation. Four RNA samples from sperm cells of these differentially fed boars were analyzed by RNA-Seq methodology. We found no differential RNA expression in sperm cells of the two groups based on the adjusted P-value > 0.05. Nevertheless, we performed a pathway analysis with 105 genes that differed in gene expression on the level of nominal P-value < 0.05 between the two diet groups. We found a significant number of these differentially expressed genes were enriched for the pathway maps of bacterial infections in cystic fibrosis (CF) airways, glycolysis and gluconeogenesis p.3 and cell cycle_Initiation of mitosis. The GO processes including a significant portion of differentially expressed genes were viral transcription and viral genome expression, viral infectious cycle, cellular protein localization, cellular macromolecule localization, nuclear-transcribed mRNA catabolic process and nonsense-mediated decay. In summary, the results of the pathway analysis are also inconclusive and it is concluded that RNA expression in sperm cells is not significantly affected by extensive supplementation of methylating micronutrients. Consequently, RNA molecules could not be established as epigenetic marks in this feeding experiment. Overall design: Gene expression in sperm cells from differentially fed F0 boars was measured. F0 boars received either a standard diet or a standard diet supplemented with methylating micronutrients. These boars were used to study transgenerational epigenetic inheritance in a three generation pig pedigree. Therefore it was of interest if the diet affects gene expression in sperm cells which could then be transmitted to next generations.

Publication Title

In search of epigenetic marks in testes and sperm cells of differentially fed boars.

Alternate Accession IDs

GSE48777

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon SRP090916
UPF1 knockdown in differentiating human myoblasts
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Human myoblast cell line 54-1 is transfected with either a srambled control siRNA or siRNA against UPF1. Two days after transfection, cell were induced to differentiate by changing grow meida to differentiation media. 2 days after induction of differentiation, cells are collected for extraction of RNA. Overall design: Human myoblast cell line 54-1 is transfected with either a srambled control siRNA or siRNA against UPF1. Two days after transfection, cell were induced to differentiate by changing grow meida to differentiation media. 2 days after induction of differentiation, cells are collected for extraction of RNA.

Publication Title

The RNA Surveillance Factor UPF1 Represses Myogenesis via Its E3 Ubiquitin Ligase Activity.

Alternate Accession IDs

GSE87679

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject, Time

View Samples
accession-icon SRP081264
Model systems of DUX4 expression recapitulate the transcriptional profile of FSHD cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

Facioscapulohumeral dystrophy (FSHD) is caused by the mis-expression of the double-homeodomain transcription factor DUX4 in skeletal muscle cells. Many different cell culture models have been developed to study the pathophysiology of FSHD, frequently based on endogenous expression of DUX4 in FSHD cells or by mis-expression of DUX4 in control human muscle cells. Although results generated using each model are generally consistent, differences have also been reported, making it unclear which model(s) faithfully recapitulate DUX4 and FSHD biology. In this study, we systematically compared RNA-seq data generated from three different models of FSHD—lentiviral-based DUX4 expression in myoblasts, doxycycline-inducible DUX4 in myoblasts, and differentiated human FSHD myocytes expressing endogenous DUX4—and show that the DUX4-associated gene expression signatures of each dataset are highly correlated (Pearson's correlation coefficient, r ~ 0.75-0.85). The few robust differences were attributable to different states of cell differentiation and other differences in experimental design. Our study describes a model system for inducible DUX4 expression that enables reproducible and synchronized experiments and validates the fidelity and FSHD relevance of multiple distinct models of DUX4 expression. Overall design: We performed a systematic comparison of DUX4-regulated changes in the transcriptome in our inducible codon-altered DUX4 expression system (iDUX4), the endogenous DUX4 expression system (enDUX4), and cells transduced with lentivirus constitutively expressing DUX4 (vDUX4). The specific datasets used in this comparison are as follows: iDUX4 represents a new dataset generated from the MB135 immortalized human myoblasts with the doxycycline inducible codon-altered DUX4 (iDUX4), performed in biological triplicate fourteen hours after DUX4 induction in growth media, with uninduced cells as a control; enDUX4 represents the published dataset of differentiated FSHD myocytes that do or do not express endogenous DUX4, as determined using a DUX4-responsive fluorescent reporter and flow sorting (9); vDUX4 represents a published dataset wherein two different myoblast cell lines (MB135 and 54-1) were transduced with a lentiviral construct that drives constitutive DUX4 expression via the PGK promoter and maintained in growth media for 24 hours (MB135) or 36 hours (54-1) prior to harvesting RNA.

Publication Title

Quantitative proteomics reveals key roles for post-transcriptional gene regulation in the molecular pathology of facioscapulohumeral muscular dystrophy.

Alternate Accession IDs

GSE85461

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP040327
Epigenetic Repogramming by an Environmental Carcinogen Through Chromatin Domain Disruption [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Alterations in chromatin modifications, including DNA methylation and histone modification patterns, have been characterized under exposure of several environmental pollutants, including nickel. As with other carcinogenic metals, the mutagenic potential of nickel compounds is low and is not well correlated with its carcinogenic effects. Nickel exposure, however, is associated with alterations in chromatin modifications and related transcriptional programs, suggesting an alternative pathway whereby nickel exposure can lead to disease. To investigate the extent to which nickel exposure disrupts chromatin patterns, we profiled several histone modifications, including H3K4me3, H3K9ac, H3K27me3 and H3K9me2 as well as the insulator binding protein CTCF and the transcriptomes of control BEAS-2B cells and cells treated with nickel for 72 hours. Our results show significant alterations of the repressive histone modification H3K9me2 in nickel-exposed cells with spreading of H3K9me2 into new domains associated with gene silencing. We furthermore show that local regions of active chromatin can protect genes from nickel-induced H3K9me2 spreading. Interestingly, we show that nickel exposure selectively disrupts weaker CTCF sites, leading to spreading of H3K9me2 at these regions. These results have major implications in the understanding of how environmental carcinogens can affect chromatin dynamics and the consequences of chromatin domain disruption in disease progression. Overall design: Treat BEAS-2B cells with NiCl2 for 72 hours and compare histone modification, CTCF binding to control BEAS-2B cells to see how they regulated gene expression by RNA-seq

Publication Title

Epigenetic dysregulation by nickel through repressive chromatin domain disruption.

Alternate Accession IDs

GSE56052

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE90820
Expression data from intestinal crypts and stroma of wild type and late generation (4th generation) telomerase-deficient mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Telomeres shorten with each round of cell division, and the expression of telomerase serves to lengthen telomeres. In the absence of telomerase, telomeres shorten to the point of uncapping and causes defects in tissues with high turnover, including the intestinal epithelium. In mice lacking telomerase (e.g. mTR-/-), telomeres critically shorten after several generations of telomerase deficiency, with pronounced defects in their intestine.

Publication Title

Mutual reinforcement between telomere capping and canonical Wnt signalling in the intestinal stem cell niche.

Alternate Accession IDs

E-GEOD-90820

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP057766
Ambient O2 pressure induces NF-kB1/RelA related inflammatory response in human lung epithelial cells in vitro
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Purpose: Oxygen (O2) levels in cell culture conditions is typically 2-5 fold higher than the physiological O2 levels that most tissues experience in vivo. The ambient atmospheric O2 (21%) is known to induce cell proliferation defects and cellular senescence in stem cell and primary cell cultures. Therefore, culturing these cells under lower O2 levels (2-9%) is currently a standard practice. However, the non-cancerous immortalized cells and cancer cells, which evade cellular senescence are normally cultured under 21% O2 levels and the effects of higher O2 levels on these cells are not fully understood. Methods: Gene expression (RNA seq transcriptomics) analysis of immortalized human bronchial epithelial (BEAS-2B) cells cultured at ambient 21% O2 and lower 10% O2 levels for 3 days and 3 weeks. Further the beneficial effects of cuturing cells under lower oxygen tension is evalulated Results: Our results show NF-?B/RelA mediated activation of pro-inflammatory cytokines as a major outcome of cells being cultured 21% O2. Moreover, we demonstrate increased RelA binding at the NF-?B1/RelA target gene promoters at 21% O2. Interestingly, contrary to cells cultutred at 21% O2, external stress induced by H2O2 exposure did not induce inflammatory response in cells grown at 10% O2, suggesting increased ability to handle external stress in cells cultured at lower O2 levels. Overall design: RNA Seq gene expression comparision done in replicates

Publication Title

Nuclear Factor κB1/RelA Mediates Inflammation in Human Lung Epithelial Cells at Atmospheric Oxygen Levels.

Alternate Accession IDs

GSE68378

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE3960
Classification of neuroblastoma by integrating gene expression pattern with regional alterations in DNA copy number
  • organism-icon Homo sapiens
  • sample-icon 102 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

The specific genes that influence neuroblastoma biology and are targeted by genomic alterations remain largely unknown. We quantified mRNA expression in a highly annotated series of 101 prospectively collected diagnostic neuroblastoma primary tumors and the expression profiles were determined using Affymetrix U95Av2 arrays. Comparisons between the sample groups allow the identification of genes with localized expression patterns. This study demonstrates that the genomic data can be used to subcategorize the disease into molecular subsets and the regional copy number alterations are correlated with a broad number of transcriptional alterations genome wide. This data also suggests that multiple genes from several discrete regions of the human genome co-operate to supress neuroblastoma tumorigenesis and progression.

Publication Title

Integrative genomics identifies distinct molecular classes of neuroblastoma and shows that multiple genes are targeted by regional alterations in DNA copy number.

Alternate Accession IDs

E-GEOD-3960

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP073725
Chd5 regulates a ribosome biogenesis switch controlling neural cell fate specification
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Cell fate specification of neural stem/progenitor cells (NSCs) is an intricate developmental process that determines neural cell identity. While transcriptional mechanisms undoubtedly affect this process, translational mechanisms are much less understood. Here we show that deficiency of the chromatin remodeler Chromodomain Helicase DNA binding protein 5 (Chd5) causes transcriptional de-repression of multiple ribosomal subunit genes, increases protein synthesis, and expands the activated stem cell pool leading to perturbation of NSC fate. Compromised H3K27me3 in Chd5 deficient NSCs during early cell fate specification underlies the generation of excessive astrocytes at the expense of neurons at later stages of differentiation. Chd5 expression rescues these cell fate defects while simultaneously reestablishing H3K27me3, and inhibition of the H3K27me3-specific demethylase Utx restores appropriate cell fate specification in NSCs lacking Chd5. These findings define a Chd5-Utx-H3K27me3 axis pivotal in ribosome biogenesis and translation during neurogenesis, consistent with compromised CHD5 being implicated in glioma. Overall design: mRNA profiles of primary neural/stem progenitor cells (NSCs) of wild type (+/+) and Chd5-/- mice were generated, in duplicate, using Illumina NextSeq 500.

Publication Title

Chromatin-mediated translational control is essential for neural cell fate specification.

Alternate Accession IDs

GSE80583

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE34209
Transcriptome analysis of genes regulated by overexpression of LATERAL ORGAN BOUNDARIES (LOB) in Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The Arabidopsis thaliana transcription factor LATERAL ORGAN BOUNDARIES (LOB) is expressed in the boundary between the shoot apical meristem and initiating lateral organs. To identify genes regulated by LOB activity, we used an inducible 35S:LOB-GR line. This analysis identified genes that are differentially expressed in response to ectopic LOB activity.

Publication Title

Arabidopsis lateral organ boundaries negatively regulates brassinosteroid accumulation to limit growth in organ boundaries.

Alternate Accession IDs

E-GEOD-34209

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE33302
Expression data from sleep deprivation experiment in mouse hippocampus
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We used microarrays to detail the global programme of gene expression underlying the effect of sleep deprivation in the mouse hippocampus and identified distinct classes of regulated genes during this process.

Publication Title

Genomic analysis of sleep deprivation reveals translational regulation in the hippocampus.

Alternate Accession IDs

E-GEOD-33302

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0