refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 36 results
Sort by

Filters

Organism

Technology

Platform

accession-icon SRP002218
Identification of ploidy-regulated genes in budding yeast
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Using RNA-seq, we analyzed the transcriptomes of isogenic haploid (MATa) and tetraploid (MATaaaa) budding yeast strains in the Sigma 1278b background and identified genes whose regulation was altered by ploidy. Overall design: Analysis of poly(A)+ RNA from 2 biological replicates of haploid (MATa) and tetraploid (MATaaaa) strains.

Publication Title

Control of transcription by cell size.

Alternate Accession IDs

GSE19685

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE7631
Cell-specific nitrogen responses in the Arabidopsis root
  • organism-icon Arabidopsis thaliana
  • sample-icon 83 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The organs of multicellular species are comprised of cell types that must function together to perform specific tasks. One critical organ function is responding to internal or external change but little is known about how responses are tailored to specific cell types or coordinated among them on a global level. Here we use cellular profiling of five Arabidopsis root cell types in response to a limiting resource, nitrogen, to uncover a vast and predominantly cell-specific response that was largely undetectable using traditional methods. These methods reveal a new class of cell-specific nitrogen responses. As a proof-of-principle, we dissected one cell-specific response circuit that mediates nitrogen-induced changes in root branching from pericycle cells. Thus, cellular response profiling links gene modules to discrete functions in specific cell types.

Publication Title

Cell-specific nitrogen responses mediate developmental plasticity.

Alternate Accession IDs

E-GEOD-7631

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP035482
MARIS: Method for Analyzing RNA following Intracellular Sorting [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We''ve developed a new Method to Analyze RNA following Intracellular Sorting (MARIS) allowing us to carry out gene expression studies on cells sorted based on intracellular immunoflourescence. The purpose of this study is to determine the degree of bias that MARIS introduces on gene expression. We report RNA-seq gene expression data from human embryonic stem cells differentiated to a stage in which insulin-expressing cells are present. Gene expression data using RNA isolated from live cells is compared to gene expression data using RNA isolated from MARIS processed cells (fixed, permeabilized, antibody stained and mock sorted) to determine the degree of correlation in gene expression between these two biologically identical samples. Overall design: Human embryonic stem cells are differentiated to a stage in which insulin-expressing cells are present and split into two biologically identical samples. RNA is immediately isolated from one sample using the RNeasy protocol (live sample). RNA is isolated from the second sample following MARIS (processed sample) with all cells collected after the sort in order to keep the cell type composition between the live and processed samples the same.

Publication Title

MARIS: method for analyzing RNA following intracellular sorting.

Alternate Accession IDs

GSE54178

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19372
Expression time series during the differentiation of ventral motor neurons from embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The aim of this study is to profile gene expression dynamics during the in vitro differentiation of embryonic stem cells into ventral motor neurons. Expression levels were profiled using Affymetrix microarrays at six timepoints during in vitro differentiation: ES cells (Day 0), embryoid bodies (Day 2), retinoid induction of neurogenesis (Day 2 +8hours of exposure to retinoic acid), neural precursors (Day 3), progenitor motor neurons (Day 4), postmitotic motor neurons (Day 7).

Publication Title

Ligand-dependent dynamics of retinoic acid receptor binding during early neurogenesis.

Alternate Accession IDs

E-GEOD-19372

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE31456
Transcriptional mechanisms controlling direct motor neuron programming
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Transcriptional programming of cell identity promises to open up new frontiers in regenerative medicine by enabling the efficient production of clinically relevant cell types. We examine if such cellular programming is accomplished by transcription factors that each have an independent and additive effect on cellular identity, or if programming factors synergize to produce an effect that is not independently obtainable. The combinations of Ngn2-Isl1-Lhx3 and Ngn2-Isl1-Phox2a transcription factors program embryonic stem cells to express a spinal or cranial motor neuron identity respectively. The two alternate expression programs are determined by recruitment of Isl1/Lhx3 and Isl1/Phox2a pairs to distinct genomic locations characterized by two alternative dimeric homeobox motifs. These results suggest that the function of programming modules relies on synergistic interactions among transcription factors and thus cannot be extrapolated from the study of individual transcription factors in a different cellular context.

Publication Title

Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity.

Alternate Accession IDs

E-GEOD-31456

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE33923
2C::tomato ES cells, 2-cell embryos and wild type oocytes
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Embryonic stem cell potency fluctuates with endogenous retrovirus activity.

Alternate Accession IDs

E-GEOD-33923

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon SRP077289
Using RNA Seq to validate transcriptional profile data obtained by Nanostring analysis
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Purpose : The goal of this study was to use RNA Seq to validate transcriptional data of two clinical isolates focussing on a subset of 74 transcript that were selected specifically for Nanostring analysis. Methods : mRNA profiles were generated for the clinical isolates FRD1 and CI224_M, in duplicate, by deep sequencing. Strains were grown for 8 hours in LB medium at 37C prior to RNA harvest. Ribosomal RNA was removed using the Ribi-Zero rRNA Removal Kit (Epicentre). mRNA reads were trimmed and mapped to the PAO1 NC_002516 reference genome from NCBI using the ClC Genomics Workbench platform and defaut parameters. Overall design: mRNA profiles of liquid cultures grown for 8 hours in LB at 37C were generated for P. aeruginosa clinical isolates FRD1 and CI224_M, each in duplicate, by deep sequencing using Illumina NextSeq.

Publication Title

Use of a Multiplex Transcript Method for Analysis of Pseudomonas aeruginosa Gene Expression Profiles in the Cystic Fibrosis Lung.

Alternate Accession IDs

GSE83773

Sample Metadata Fields

Disease, Subject

View Samples
accession-icon GSE40422
Gene expression profiling of enforced HOXA1 expression in melanoma cell line (SkMel30)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We recently reported an oncogenomics-guided screening approach designed to identify genetic drivers of early stage melanoma metastasis, and in this study we functionally validate the top-scoring candidate, homeobox transcription factor A1 (HOXA1), by demonstrating HOXA1s robust effects on melanoma cell invasion, metastasis and tumorigenicity. Transcriptome and pathway profiling analyses of cells expressing HOXA1 reveal up-regulation of factors involved in diverse cytokine pathways that include the TGF signaling axis, which we further demonstrate to be required for HOXA1-mediated cell invasion. Transcriptome profiling also informed HOXA1s ability to potently down-regulate expression of microphthalmia-associated transcription factor (MITF) and other genes required for melanocyte differentiation, suggesting a mechanism by which HOXA1 expression de-differentiates cells into a pro-invasive precursor cell state concomitant with TGF activation. Our analysis of publicly available datasets indicate that the HOXA1-induced gene signature successfully categorizes melanoma specimens based on their metastatic potential and, importantly, is capable of stratifying melanoma patient risk for metastasis based on expression in primary tumors.

Publication Title

HOXA1 drives melanoma tumor growth and metastasis and elicits an invasion gene expression signature that prognosticates clinical outcome.

Alternate Accession IDs

E-GEOD-40422

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE37136
Gene expression profiling of enforced HOXA1 expression in melanoma cell line
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We recently reported an oncogenomics-guided screening approach designed to identify genetic drivers of early stage melanoma metastasis, and in this study we functionally validate the top-scoring candidate, homeobox transcription factor A1 (HOXA1), by demonstrating HOXA1s robust effects on melanoma cell invasion, metastasis and tumorigenicity. Transcriptome and pathway profiling analyses of cells expressing HOXA1 reveal up-regulation of factors involved in diverse cytokine pathways that include the TGF signaling axis, which we further demonstrate to be required for HOXA1-mediated cell invasion. Transcriptome profiling also informed HOXA1s ability to potently down-regulate expression of microphthalmia-associated transcription factor (MITF) and other genes required for melanocyte differentiation, suggesting a mechanism by which HOXA1 expression de-differentiates cells into a pro-invasive precursor cell state concomitant with TGF activation. Our analysis of publicly available datasets indicate that the HOXA1-induced gene signature successfully categorizes melanoma specimens based on their metastatic potential and, importantly, is capable of stratifying melanoma patient risk for metastasis based on expression in primary tumors.

Publication Title

HOXA1 drives melanoma tumor growth and metastasis and elicits an invasion gene expression signature that prognosticates clinical outcome.

Alternate Accession IDs

E-GEOD-37136

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE33763
Expression data from 2C::tomato+ vs 2C::tomato - ES cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We compared gene expression from 2C::tomato+/- ES cells from Kdm1a wt and mutant ES cultures

Publication Title

Embryonic stem cell potency fluctuates with endogenous retrovirus activity.

Alternate Accession IDs

E-GEOD-33763

Sample Metadata Fields

Cell line

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0