The transcriptome of the three atino80 allelic mutants was compared to that of wild-type and 50B Arabidopsis plants (see Fritsch et al. 2004). Since the transcriptomes of 50B and wild-type plants were found to be identical, we compared expression in the mutant with 50B and with wild-type without distinction. Therefore, we had four replicates of the wild type condition (50B line, wild-type) and two replicates for each of the mutant alleles (atino80-1, atino80-2 and atino80-3), all ecotype Columbia. All lines were profiled in duplicate (grown independently at 2-week-intervals).
The INO80 protein controls homologous recombination in Arabidopsis thaliana.
None
Age, Specimen part
View SamplesPrimary human foreskin fibroblasts (HFF) were exposed to either salt stress (80mM KCl) or heat stress (44ºC). Newly transcribed RNA was labelled by adding 500µM 4-thiouridine (4sU) to the cell culture media for 1h. Total cellular RNA was isolated using Trizol. Newly transcribed RNA was purified following the protocol described in Raedle et al. JoVE 2013. Overall design: Newly transcribed RNA was labelled in one hour intervals during either salt or heat stress (prior to stress, 0-1h or 1-2h). All 4sU-RNA samples were sent for sequencing. Two independent biological replicates were analysed.
HSV-1-induced disruption of transcription termination resembles a cellular stress response but selectively increases chromatin accessibility downstream of genes.
Specimen part, Subject, Time
View SamplesQuiescent stem cells of glioblastoma (GBM), a malignant primary brain tumor, are potential sources for recurrence after therapy. However, the gene expression program underlying the physiology of GBM stem cells remains unclear. We have isolated quiescent GBM cells by engineering them with a knock-in H2B-GFP proliferation reporter and expanding them in a 3D tumor organoid model that mimics tumor heterogeneity. H2B-GFP label retaining quiescent cells were subjected to stem cell assays and RNA-Seq gene expression analysis. While quiescent GBM cells were similar in clonal culture assays to their proliferative counterparts, they displayed higher therapy resistance. Interestingly, quiescent GBM cells upregulated epithelial-mesenchymal transition (EMT) genes and genes of extracellular matrix components. Our findings connect quiescent GBM cells with an EMT-like shift, possibly explaining how GBM stem cells achieve high therapy resistance and invasiveness, and suggest new targets to abrogate GBM. Overall design: Glioblastoma cancer cells in 3D organoid culture were pulsed for 2 weeks with H2B-GFP, then chased either 2 or 4 weeks. Label-retaining GFP-high cells (quiescent) were separated from bulk population, and both populations were analyzed by RNA-Seq.
Gene signatures of quiescent glioblastoma cells reveal mesenchymal shift and interactions with niche microenvironment.
Specimen part, Subject
View SamplesHere we quantified the transcription start site usage in a WT strain (BY4741) and a ?set2 strain associated with the appearence of cryptic transcription start sites. Overall design: Transcription start site usage was quantified using the 5’cap sequencing aproach for S. cerevisiae strains. Biological duplicates were included.
A high-throughput ChIP-Seq for large-scale chromatin studies.
Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
An immediate-late gene expression module decodes ERK signal duration.
Specimen part, Cell line
View SamplesWe integrate experimental data and mathematical modelling to unveil how ERK signal duration is relayed to mRNA dynamics.
An immediate-late gene expression module decodes ERK signal duration.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2-mediated gene silencing.
Specimen part
View SamplesG9a/GLP and Polycomb Repressive Complex 2 (PRC2) are two major epigenetic silencing machineries, which in particular methylate histone H3 on lysines 9 and 27 (H3K9 and H3K27), respectively. Although evidence of a crosstalk between H3K9 and H3K27 methylations has started to emerge, their actual interplay remains elusive. Here, we show that PRC2 and G9a/GLP interact physically and functionally. Moreover, combining different genome-wide approaches, we demonstrate that Ezh2 and G9a/GLP share an important number of common genomic targets, encoding developmental and neuronal regulators. Furthermore, we show that G9a enzymatic activity modulates PRC2 genomic recruitment to a subset of its target genes. Taken together, our findings demonstrate an unanticipated interplay between two main histone lysine methylation mechanisms, which cooperate to maintain silencing of a subset of developmental genes.
The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2-mediated gene silencing.
Specimen part
View SamplesG9a/GLP and Polycomb Repressive Complex 2 (PRC2) are two major epigenetic silencing machineries, which in particular methylate histone H3 on lysines 9 and 27 (H3K9 and H3K27), respectively. Although evidence of a crosstalk between H3K9 and H3K27 methylations has started to emerge, their actual interplay remains elusive. Here, we show that PRC2 and G9a/GLP interact physically and functionally. Moreover, combining different genome-wide approaches, we demonstrate that Ezh2 and G9a/GLP share an important number of common genomic targets, encoding developmental and neuronal regulators. Furthermore, we show that G9a enzymatic activity modulates PRC2 genomic recruitment to a subset of its target genes. Taken together, our findings demonstrate an unanticipated interplay between two main histone lysine methylation mechanisms, which cooperate to maintain silencing of a subset of developmental genes. Overall design: RNA-seq has been perform in triplicate on mES cell (TT2 : Wildtype, and KO G9a-/-)
The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2-mediated gene silencing.
Specimen part, Cell line, Subject
View SamplesIn osteosarcoma patients, the development of metastases, often to the lungs, is the most frequent cause of death. To improve this situation, a deeper understanding of the molecular mechanisms governing osteosarcoma development and dissemination and the identification of novel drug targets for an improved treatment are needed. Towards this aim, we characterized osteosarcoma tissue samples compared to primary osteoblast cells using Affymetrix HG U133A microarrays.
De novo expression of EphA2 in osteosarcoma modulates activation of the mitogenic signalling pathway.
No sample metadata fields
View Samples