refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 109 results
Sort by

Filters

Organism

Technology

Platform

accession-icon SRP058571
Somatic cell fusions reveal extensive heterogeneity in basal-like breast cancer [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconNextSeq500

Description

Basal-like and luminal breast tumors have distinct clinical behavior and molecular profiles, yet the underlying mechanisms are poorly defined. To interrogate processes that determine these distinct phenotypes and their inheritance pattern, we generated somatic cell fusions and performed integrated genetic and epigenetic (DNA methylation and chromatin) profiling. We found that the basal-like trait is generally dominant and it is largely defined by epigenetic repression of luminal transcription factors. Definition of super-enhancers highlighted a core program common in luminal cells but high degree of heterogeneity in basal-like breast cancers that correlates with clinical outcome. We also found that protein extracts of basal-like cells is sufficient to induce luminal-to-basal phenotypic switch implying a trigger of basal-like autoregulatory circuits. We determined that KDM6A might be required for luminal-basal fusions, and identified EN1, TBX18, and TCF4 as candidate transcriptional regulators of luminal-to-basal switch. Our findings highlight the remarkable epigenetic plasticity of breast cancer cells. Overall design: RNA-Seq in breast cancer cell-lines

Publication Title

Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast Cancer.

Alternate Accession IDs

GSE69114

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE81721
Autophagy maintains metabolism and functional activity of a subset of aged hematopoietic stem cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Autophagy maintains the metabolism and function of young and old stem cells.

Alternate Accession IDs

E-GEOD-81721

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE81719
Autophagy maintains metabolism and functional activity of a subset of aged hematopoietic stem cells [gene expression]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Autophagy is critical for protecting HSCs from metabolic stress. Here, we used a genetic approach to inactivate autophagy in adult HSCs by deleting the Atg12 gene. We show that loss of autophagy causes accumulation of mitochondria and an oxidative phosphorylation (OXPHOS)-activated metabolic state, which drives accelerated myeloid differentiation likely through epigenetic deregulations rather than transcriptional changes, and impairs HSC self-renewal activity and regenerative potential.

Publication Title

Autophagy maintains the metabolism and function of young and old stem cells.

Alternate Accession IDs

E-GEOD-81719

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE78107
Expression data from serum-starved human umbilical vein endothelial cells that have been treated with scrambled (scr) or Map4k4 siRNA to knock down genes of interest 48 hours prior to harvest
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We identified that knocking down Map4k4 in endothelial cells affected genes associated with the cell cycle, mitosis, and inflammatory genes.

Publication Title

Endothelial Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 Is Critical for Lymphatic Vascular Development and Function.

Alternate Accession IDs

E-GEOD-78107

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE48438
Expression data from osteoblastic lineage cells isolated from normal and leukemic mice
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Multipotent stromal cells (MSC) and their osteoblastic lineage cell (OBC) derivatives are part of the bone marrow (BM) niche and contribute to hematopoietic stem cell (HSC) maintenance. During myeloproliferative neoplasm (MPN) development, MSCs are stimulated to overproduce functtionally altered OBCs, which accumulate in the BM cavity as myelofibrotic cells. These MPN-expanded OBCs, in turn, impair the maintenance of normal HSCs but not of leukemic stem cells.

Publication Title

Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche.

Alternate Accession IDs

E-GEOD-48438

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE63998
Microarray analysis of Mef2c deficient and control bone marrow pre-B and pro-B cells
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MEF2C protects bone marrow B-lymphoid progenitors during stress haematopoiesis.

Alternate Accession IDs

E-GEOD-63998

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE63996
Microarray analysis of Mef2c deficient and control bone marrow pre-B cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Gene expression of mice bone marrow pre-B cells from both control and Vav-Cre Mef2cfl/fl mice (9 months old)

Publication Title

MEF2C protects bone marrow B-lymphoid progenitors during stress haematopoiesis.

Alternate Accession IDs

E-GEOD-63996

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE63997
Microarray analysis of Mef2c deficient and control bone marrow pro-B cells
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Gene expression of mice bone marrow pro-B cells from both control and Vav-Cre Mef2cfl/fl mice (9 months old)

Publication Title

MEF2C protects bone marrow B-lymphoid progenitors during stress haematopoiesis.

Alternate Accession IDs

E-GEOD-63997

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE76319
Expression data from SGBS human cells before and after 24 hours of stimulation with differentiation cocktail, with or without Scrambled (Scr) or Tenomodulin (TNMD) siRNA to knockdown the genes of interest.
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

In a screen for upregulated adipocyte genes in insulin resistant versus insulin sensitive subjects matched for BMI, we identified the type II transmembrane protein tenomodulin (TNMD), previously implicated in glucose tolerance in gene association studies. TNMD expression was greatly increased in human preadipocytes during differentiation, while silencing TNMD blocked adipogenic gene induction and adipogenesis.

Publication Title

Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion.

Alternate Accession IDs

E-GEOD-76319

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11936
Induction of lipid oxidation gene expression by polyunsaturated fatty acids of marine origin in small intestine of mice
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Dietary polyunsaturated fatty acids (PUFA) act as potent natural hypolipidemics and are linked to many health benefits in humans and in animal models. Mice fed long-term a high fat diet, in which medium-chain alpha linoleic acid (ALA) was partially replaced by long-chain docosahexaenoic (DHA) and eicosapentaenoic (EPA) fatty acids, showed reduced accumulation of body fat and prevention of insulin resistance, besides increased mitochondrial beta-oxidation in white adipose tissue and decreased plasma lipids. ALA, EPA and DHA all belong to PUFA of n-3 series. The intestine is a gatekeeper organ for ingested lipids. To examine the potential contribution of the intestine in the beneficial effects of EPA and DHA, this study assessed gene expression changes using whole genome microarray analysis on small intestinal scrapings. The main biological process affected was lipid metabolism. Fatty acid uptake, peroxisomal and mitochondrial beta-oxidation, and omega-oxidation of fatty acids were all increased. Quantitative real time PCR and intestinal fatty acid oxidation measurements ([14C(U)]-palmitate) confirmed significant gene expression differences in a dose-dependent manner. Furthermore, no major changes in the expression of lipid metabolism genes were observed in colonic scrapings. In conclusion, we show that marine n-3 fatty acids regulate small intestinal gene expression patterns. Since this organ contributes significantly to whole organism energy use, this adaptation of the small intestine may contribute to the complex and observed beneficial physiological effects of these natural compounds under conditions that will normally lead to development of obesity and diabetes.

Publication Title

Induction of lipid oxidation by polyunsaturated fatty acids of marine origin in small intestine of mice fed a high-fat diet.

Alternate Accession IDs

E-GEOD-11936

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0