refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 58 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE82308
Expression data from whole lateral ventricle choroid plexus tissue of young (two months old) and aged (eighteen months old) CD1 male mice.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We used microarrays to reveal the global expression profiles of young and old whole lateral ventricle choroid plexus tissue.

Publication Title

Age-Dependent Niche Signals from the Choroid Plexus Regulate Adult Neural Stem Cells.

Alternate Accession IDs

E-GEOD-82308

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE7069
Zfx controls the self-renewal of embryonic and hematopoietic stem cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Stem cells (SC) exhibit a unique capacity for self-renewal in an undifferentiated state. It is unclear whether the self-renewal of pluripotent embryonic SC (ESC) and of tissue-specific adult SC such as hematopoietic SC (HSC) is controlled by common mechanisms. The deletion of transcription factor Zfx impaired the self-renewal but not the differentiation capacity of murine ESC; conversely, Zfx overexpression facilitated ESC self-renewal by opposing differentiation. Furthermore, Zfx deletion abolished the maintenance of adult bone marrow HSC, but did not affect erythromyeloid progenitors or fetal HSC. In both ESC and HSC, Zfx activated a common set of direct target genes. In addition, the loss of Zfx resulted in the induction of immediate-early and/or stress-inducible genes in both SC types but not in their differentiated progeny. These studies identify the first shared transcriptional regulator of ESC and HSC, suggesting a common molecular basis of self-renewal in embryonic and adult SC.

Publication Title

Zfx controls the self-renewal of embryonic and hematopoietic stem cells.

Alternate Accession IDs

E-GEOD-7069

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE54653
Expression data from quiescent and activated neural stem cells from the adult mouse V-SVZ niche
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

RNA was purified from GFAP::GFP+CD133+ and GFAP::GFP+CD133+EGFR+ cells isolated from the adult mouse V-SVZ niche (GFAP::GFP mice, Jackson Mice Stock number 003257)

Publication Title

Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche.

Alternate Accession IDs

E-GEOD-54653

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20281
The transcriptional network for mesenchymal transformation of brain tumours
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 108 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The transcriptional network for mesenchymal transformation of brain tumours.

Alternate Accession IDs

E-GEOD-20281

Sample Metadata Fields

Time

View Samples
accession-icon GSE19114
A transcriptional module initiates and maintains mesenchymal transformation in brain tumors [human data]
  • organism-icon Homo sapiens
  • sample-icon 74 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Using a novel combination of cellular-network reverse-engineering algorithms and experimental validation assays, we identified a transcriptional module, including six transcription factors that synergistically regulates the mesenchymal signature of malignant glioma. This is a poorly understood molecular phenotype, never observed in normal neural tissue. It represents the hallmark of tumor aggressiveness in high-grade glioma, and its upstream regulation is so far unknown. Overall, the newly discovered transcriptional module regulates >74% of the signature genes, while two of its transcription factors (C/EBP and Stat3) display features of initiators and master regulators of mesenchymal transformation. Ectopic co-expression of C/EBP and Stat3 is sufficient to reprogram neural stem cells along the aberrant mesenchymal lineage, while simultaneously suppressing differentiation along the default neural lineages (neuronal and glial). Conversely, silencing the two transcription factors in human glioma cell lines and glioblastoma-derived tumor initiating cells leads to collapse of the mesenchymal signature with corresponding loss of tumor aggressiveness in vitro and in immunodeficient mice after intracranial injection. In human tumor samples, combined expression of C/EBP and Stat3 correlates with mesenchymal differentiation of primary glioma and is a predictor of poor clinical outcome. Taken together, these results reveal that activation of a small regulatory module inferred from the accurate reconstruction of transcriptional networks is necessary and sufficient to initiate and maintain an aberrant phenotypic state in eukaryotic cells.

Publication Title

The transcriptional network for mesenchymal transformation of brain tumours.

Alternate Accession IDs

E-GEOD-19114

Sample Metadata Fields

Time

View Samples
accession-icon GSE19113
A transcriptional module initiates and maintains mesenchymal transformation in brain tumors [mouse data]
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Using a novel combination of cellular-network reverse-engineering algorithms and experimental validation assays, we identified a transcriptional module, including six transcription factors that synergistically regulates the mesenchymal signature of malignant glioma. This is a poorly understood molecular phenotype, never observed in normal neural tissue. It represents the hallmark of tumor aggressiveness in high-grade glioma, and its upstream regulation is so far unknown. Overall, the newly discovered transcriptional module regulates >74% of the signature genes, while two of its transcription factors (C/EBP and Stat3) display features of initiators and master regulators of mesenchymal transformation. Ectopic co-expression of C/EBP and Stat3 is sufficient to reprogram neural stem cells along the aberrant mesenchymal lineage, while simultaneously suppressing differentiation along the default neural lineages (neuronal and glial). Conversely, silencing the two transcription factors in human glioma cell lines and glioblastoma-derived tumor initiating cells leads to collapse of the mesenchymal signature with corresponding loss of tumor aggressiveness in vitro and in immunodeficient mice after intracranial injection. In human tumor samples, combined expression of C/EBP and Stat3 correlates with mesenchymal differentiation of primary glioma and is a predictor of poor clinical outcome. Taken together, these results reveal that activation of a small regulatory module, inferred from the accurate reconstruction of transcriptional networks, is necessary and sufficient to initiate and maintain an aberrant phenotypic state in eukaryotic cells.

Publication Title

The transcriptional network for mesenchymal transformation of brain tumours.

Alternate Accession IDs

E-GEOD-19113

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE83615
Gene expression profiling of neutrophils and whole lung tissue from wildtype and Nrf2 null (Nfe2l2-/-) mice during S. pneumoniae pneumonia
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Nrf2 Modulates Host Defense during Streptococcus pneumoniae Pneumonia in Mice.

Alternate Accession IDs

E-GEOD-83615

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE83612
Gene expression profiling of neutrophils and whole lung tissue from wildtype and Nrf2 null (Nfe2l2-/-) mice during S. pneumoniae pneumonia [whole lung]
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

The transcription factor Nrf2 (gene symbol Nfe2l2) regulates the transcriptional response to oxidative stress and plays a critical protective role in the lungs.

Publication Title

Nrf2 Modulates Host Defense during Streptococcus pneumoniae Pneumonia in Mice.

Alternate Accession IDs

E-GEOD-83612

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE83613
Gene expression profiling of neutrophils and whole lung tissue from wildtype and Nrf2 null (Nfe2l2-/-) mice during S. pneumoniae pneumonia [neutrophils]
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

The transcription factor Nrf2 (gene symbol Nfe2l2) regulates the transcriptional response to oxidative stress and plays a critical protective role in the lungs.

Publication Title

Nrf2 Modulates Host Defense during Streptococcus pneumoniae Pneumonia in Mice.

Alternate Accession IDs

E-GEOD-83613

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE46025
Expression data from WT and Foxo1 KO CD8+ KLRG1high or KLRG1low populations after LCMV infection
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The forkhead O transcription factors (FOXO) integrate a range of extracellular signals including growth factor signaling, inflammation, oxidative stress and nutrient availability, to substantially alter the program of gene expression and modulate cell survival, cell cycle progression, and many cell-type specific responses yet to be unraveled. Naive antigen-specific CD8+ T cells undergo a rapid expansion and arming of effector function within days of pathogen exposure, but in addition, by the peak of expansion, they form precursors to memory T cells capable of self-renewal and indefinite survival.

Publication Title

Differentiation of CD8 memory T cells depends on Foxo1.

Alternate Accession IDs

E-GEOD-46025

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0