refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 44 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE61399
Activation of the JAK/STAT pathway in Behcets Disease
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Th1/Th17-type T-cell responses are upregulated in Behcets disease (BD). However, signaling pathways associated with this aberrant immune response are not clarified. Whole-genome microarray profiling was performed with human U133 (Plus 2.0) chips using mRNA of isolated CD14+ monocytes and CD4+ T-cells from PBMC in patients with BD (n=9) and healthy controls (HC) (n=9). Flow cytometric analysis of unstimulated (US) and stimulated (PHA) STAT3 and pSTAT3 expressions of PBMCs were also analysed (BD and HC, both n=26). JAK1 was observed to be upregulated in both CD14+ monocytes (1.94 fold) and CD4+ T-lymphocytes (1.40 fold) of BD patients. Using canonical pathway enrichment analysis, JAK/STAT signaling was identified as activated in both CD14+ monocytes (p=2.95E-06) and in CD4+ lymphocytes (p=8.13E-04) in BD. Interferon (p=1.02E-07) and IL-6 (p=8.91E-03) signaling pathways were also prominent in CD14+ monocytes. Basal unstimulated total STAT3 expression was significantly higher in BD (1.2 vs 3.45, p<0.05). The JAK1/STAT3 signaling pathway is activated in BD, possibly through the activation of Th1/Th17-type cytokines such as IL-2, IFN, IL-6, IL-17 and IL-23.

Publication Title

Activation of the JAK/STAT pathway in Behcet's disease.

Alternate Accession IDs

E-GEOD-61399

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE34232
Expression data from wildtype, MIST1-null, and induced MIST1 Mus musculus pancreata
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Although early developmental processes involve cell fate decisions that define the body axes and establish progenitor cell pools, development does not cease once cells are specified. Instead, most cells undergo specific maturation events where changes in the cell transcriptome ensure that the proper gene products are expressed to carry out unique physiological functions. Pancreatic acinar cells mature post-natally to handle an extensive protein synthetic load, establsih organized apical-basal polarity for zymogen granule trafficking, and assemble gap-junctions to perimt efficient cell-cell communication. Despite significant progress in defining transcriptional networks that control initial acinar cell specification and differentiation decisions, little is know regarding the role of transcription factors in the specification and maintenance of maturation events. One candidate maturation effector is MIST1, a secretory cell-restricted transcription factor that has been implicated in controlling regulated exocytosis events in a number of cell types. Embryonic knock-out of MIST1 generates acinar cells that fail to establish an apical-basal organization, fail to properly localize zymogen granule and fail to communicate intra-cellularly, making the exocrine organ highly suceptible to pancreatic diseases.

Publication Title

Induced Mist1 expression promotes remodeling of mouse pancreatic acinar cells.

Alternate Accession IDs

E-GEOD-34232

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE39632
Gene Expression profiling of transgenic mice expressing the genetically encoded calcium indicator TN-XXL in muscle and brain tissues
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Engineering of genetically encoded calcium indicators predominantly focused on optimizing fluorescence changes, but effects of indicator expression on host organisms have largely not been addressed. Here, we report biocompatibility and wide-spread functional expression of the genetically encoded calcium indicator TN-XXL in a transgenic mouse model. To validate the model and to characterize potential effects of indicator expression we assessed both indicator function and a variety of host parameters such as anatomy, physiology, behavior and gene expression profiles in these mice. We also demonstrate the usefulness of primary cell types and organ explants prepared from these mice for imaging applications. While we do find mild signatures of indicator expression that may guide further indicator development the green indicator mice generated provide a well characterized resource of primary cells and tissues for in vitro and in vivo calcium imaging applications.

Publication Title

Biocompatibility of a genetically encoded calcium indicator in a transgenic mouse model.

Alternate Accession IDs

E-GEOD-39632

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18740
Luteolin has anti-inflammatory and neurotrophic effects on microglia
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Our aim was to identify genes that were differentially expressed in microglia stimulated with Lipopolysaccharide, Luteolin, or both.

Publication Title

Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype.

Alternate Accession IDs

E-GEOD-18740

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP162257
Cortisol acting through the glucocorticoid receptor is not responsible for exercise-enhanced growth but does affect the white skeletal muscle transcriptome in zebrafish (Danio rerio)
  • organism-icon Danio rerio
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Forced sustained swimming exercise at optimal speed enhances growth in many fish species, particularly through hypertrophy of the white skeletal muscle. The exact mechanism of this effect has not been resolved yet. To explore the mechanism, we first subjected wild-type zebrafish to an exercise protocol validated for exercise-enhanced growth, and showed that exercised zebrafish, which indeed showed enhanced growth, had higher cortisol levels than the non-exercised controls. A central role was therefore hypothesized for the steroid hormone cortisol acting through the Glucocorticoid receptor (Gr). Second, we subjected wild-type zebrafish and zebrafish with a mutant Gr to exercise at optimal, suboptimal and super-optimal speeds and compared them with non-exercised controls. Exercised zebrafish showed growth enhancement at all speeds, with highest growth at optimal speeds. In the Gr mutant fish, exercise resulted in growth enhancement similar to wild-type zebrafish, indicating that cortisol cannot be considered as a main determinant of exercise-enhanced growth. Finally, the transcriptome of white skeletal muscle tissue was analysed by RNA sequencing. The results of this analysis showed that in the muscle tissue of Gr mutant fish a lower number of genes is regulated by exercise than in wild-type fish (183 versus 351). A cluster of 36 genes was regulated by exercise in both wild-type and mutant fish. In this cluster, genes involved in transcriptional regulation and protein ubiquitination were overrepresented. Since growth was enhanced similarly in both wild-type fish and mutants, these processes may play an important role in exercise-enhanced growth. Overall design: Deep-sequencing transcriptome analysis of white muscle samples derived from wild-type (++) or glucocorticoid receptor (Gr) mutant (--) Danio rerio specimens that were exposed to either a resting (REST) or a swimming (UOPT) regimen: wild-type resting (REST++; n=3), Gr mutant resting (REST--; n=3), wild-type swimming (UOPT++; n=3), Gr mutant swimming (UOPT--; n=3).

Publication Title

Cortisol Acting Through the Glucocorticoid Receptor Is Not Involved in Exercise-Enhanced Growth, But Does Affect the White Skeletal Muscle Transcriptome in Zebrafish (<i>Danio rerio</i>).

Alternate Accession IDs

GSE120253

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE2362
Altered hepatic gene expression in liver-Cpr-null and Cpr-low mice
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

NADPH-cytochrome P450 reductase (CPR) is important for the functions of many enzymes, such as microsomal cytochrome P450 (P450) monooxygenases and heme oxygenases. Two mouse models with deficient CPR expression in adults were recently generated in this laboratory: liver-Cpr-null (with liver-specific Cpr deletion) (Gu et al., J. Biol. Chem., 278, 2589525901, 2003) and Cpr-low (with reduced CPR expression in all organs examined) (Wu et al. J. Pharmacol. Expt. Ther. 312, 35-43, 2005). The phenotypes included a reduced serum cholesterol level and an induction of hepatic P450 in both models, and hepatomegaly and fatty liver in the liver-Cpr-null mouse alone. Our aim was to identify hepatic gene-expression changes related to these phenotypes. Cpr-lox mice, which have normal CPR expression (Wu et al., Genesis, 36, 177-181, 2003.), were used as the control in microarray analysis. A detailed analysis of the gene-expression changes in lipid metabolism and transport pathways revealed potential mechanisms, such as an increased activation of constitutive androstane receptor (CAR) and a decreased activation of peroxisomal proliferators activated receptor alpha (PPAR-gamma) by precursors of cholesterol biosynthesis, that underlie common changes (e.g., induction of multiple P450s and inhibition of genes for fatty acids metabolism) in response to CPR-loss in the two mouse models. Moreover, we also uncovered model-specific gene-expression changes, such as the induction of a lipid translocase (CD36 antigen) and the suppression of carnitine O-palmitoyltransferase 1 (CPT1a) and acyl-CoA synthetase long-chain family member 1 (Acsl1), that are potentially responsible for the severe hepatic lipidosis observed in liver-Cpr-null, but not Cpr-low mice.

Publication Title

Hepatic gene expression changes in mouse models with liver-specific deletion or global suppression of the NADPH-cytochrome P450 reductase gene. Mechanistic implications for the regulation of microsomal cytochrome P450 and the fatty liver phenotype.

Alternate Accession IDs

E-GEOD-2362

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE68465
caArray_jacob-00182: Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study
  • organism-icon Homo sapiens
  • sample-icon 222 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Here we report a large, training*testing, multi-site, blinded validation study to characterize the performance of several prognostic models based on gene expression for 442 lung adenocarcinomas. The hypotheses proposed examined whether microarray measurements of gene expression either alone or combined with basic clinical covariates (stage, age, sex) could be used to predict overall survival in lung cancer subjects. Several models examined produced risk scores that substantially correlated with actual subject outcome. Most methods performed better with clinical data, supporting the combined use of clinical and molecular information when building prognostic models for early-stage lung cancer. This study also provides the largest available set of microarray data with extensive pathological and clinical annotation for lung adenocarcinomas.

Publication Title

Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study.

Alternate Accession IDs

E-GEOD-68465

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Race

View Samples
accession-icon GSE28996
Xenograft model systems of adenoid cystic carcinoma
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Adenoid cystic carcinoma (ACC) is one of the most common malignancies that arise in the salivary glands, with an incidence of 4.5 per 1,000,000. It can also arise in glandular tissue closely related to salivary glands in the lacrimal gland, nasal passages and tracheobronchial tree, as well as in glands of the breast and vulva. At all of these sites, it is characterized by a distinctive histology of basaloid epithelial cells arranged in cribriform or tubular patterns, usually demonstrating abundant hyaline extracellular matrix secretion and some degree of myoepithelial differentiation. ACC is generally a slow-growing tumor characterized by a protracted clinical course, usually well over 5 years in duration, marked by regional recurrence, distant metastasis and/or spread along peripheral nerves. A recurrent chromosomal translocation, t(6;9)(q23;p21), has been identified in ACC, and recently it has been discovered that in a majority of ACC the MYB gene on chromosome 6 is fused to the 3 terminus of the NFIB gene on chromosome 9, creating a fusion gene product resulting in increased MYB-related transcriptional activation. Recently it has been determined that most cell lines with attribution of ACC derivation are either contaminants of other cell lines or do not have the characteristic MYB-NFIB translocation. Also, there are no animal models of this histologically and genetically defined tumor type. To address the paucity of experimental and pre-clinical models systems of ACC, we have for several years been establishing xenograft tumor lines from clinical samples of ACC. We describe our experience with these models and their characterization here.

Publication Title

Development and characterization of xenograft model systems for adenoid cystic carcinoma.

Alternate Accession IDs

E-GEOD-28996

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE29754
Differential regulation of Twist1-responsive genes in 4T1 cells
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Twist1 variants including wildtype Twist1, a non-phosphorylatable mutant Twist1/S42A and a phospho-mimicking mutant Twist1/S42D were expressed in 4T1 cells in which the endogenous Twist1 was depleted.

Publication Title

Akt/PKB-mediated phosphorylation of Twist1 promotes tumor metastasis via mediating cross-talk between PI3K/Akt and TGF-β signaling axes.

Alternate Accession IDs

E-GEOD-29754

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15757
PRC2 in Ewing tumors
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We found the PRC2 component EZH2 to be upregulated by the pathognomonic fusion oncogene EWS-FLI1 in Ewing tumors and mesenchymal stem cells (Richter GH et al., Proc Natl Acad Sci U S A. 2009;106:5324-9). Downregulation of EZH2 by RNA interference in Ewing tumor cell lines suppressed oncogenic transformation in vitro and in vivo. These data suggest that EZH2 might play a central role in Ewing Tumor pathology.

Publication Title

Epigenetic maintenance of stemness and malignancy in peripheral neuroectodermal tumors by EZH2.

Alternate Accession IDs

E-GEOD-15757

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0