refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 252 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE56998
Expression data of CD4+T cells from Idiopathic CD4+ T cells lymphopenia (ICL) patients, Sarcoidosis (SARC) and Healthy individuals
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This work focuses on understanding the molecular basis of the immune dysfunctions in Idiopathic CD4+ T cells lymphocytopenia (ICL). ICL is a rare haematological disorder of unknown origin, characterized by a profound and persistent CD4+ T-cell defect, which predisposes to life threatening opportunistic infections very similar to those seen in AIDS. To analyse more in depth the functional pathways involved in ICL pathogenesis, we conducted gene expression profiling of CD4+ T-cells isolated from blood samples from ICL, sarcoidosis and healthy individuals. Our analyses have revealed specific CD4+ T-cells gene expression signatures in ICL associated with defective TCR activation threshold, expansion of the Treg-cell compartment and interestingly with accelerated immune aging.

Publication Title

DUSP4-mediated accelerated T-cell senescence in idiopathic CD4 lymphopenia.

Alternate Accession IDs

E-GEOD-56998

Sample Metadata Fields

Sex

View Samples
accession-icon GSE92861
Expression data from individual MEF2A isoform knockdown in neonatal rat ventricular myocytes (NRVMs)
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

Regulation of homeostasis and development of cardiac muscle tissues is controlled by a core set of transcription factors. The MEF2 family plays a critical role in these processes.

Publication Title

Antagonistic regulation of cell-cycle and differentiation gene programs in neonatal cardiomyocytes by homologous MEF2 transcription factors.

Alternate Accession IDs

E-GEOD-92861

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54500
Role of H3K79 methylation states in HOX gene expression and leukemogenesis
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

AF10 regulates progressive H3K79 methylation and HOX gene expression in diverse AML subtypes.

Alternate Accession IDs

E-GEOD-54500

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE37464
Pleiotropic Effects of the Trichloroethylene-Associated P81S VHL Mutation on Metabolism, Apoptosis and ATM-Mediated DNA Damage Response
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Gene expression data from VHL teratomas comparing genes differentially expressed based on apoptotic response to tumor microenvironment.

Publication Title

Pleiotropic effects of the trichloroethylene-associated P81S VHL mutation on metabolism, apoptosis, and ATM-mediated DNA damage response.

Alternate Accession IDs

E-GEOD-37464

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE8438
IP Staufen1
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In human cells, Staufen1 is double-stranded RNA-binding protein involved in several cellular functions including mRNA localization, translation and decay. We used a genome wide approach to identify and compare the mRNA targets of mammalian Staufen1. The mRNA content of Staufen1 mRNPs was identified by probing DNA microarrays with probes derived from mRNAs isolated from immunopurified Staufen-containing complexes following transfection of HEK293T cells with a Stau1-HA expressor. Our results indicate that 7% of the cellular RNAs expressed in HEK293T cells are found in Stau1-containing mRNPs. There is a predominance of mRNAs involved in cell metabolism, transport, transcription, regulation of cell processes and catalytic activity.

Publication Title

A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes.

Alternate Accession IDs

E-GEOD-8438

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8437
IP Staufen2
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In human cells, Staufen2 is a double-stranded RNA-binding protein involved in several cellular functions. Although 51% identical to Staufen1, these proteins are nevertheless found in different RNA particles. In addition, differential splicing events generate Staufen2 isoforms that only differ at their N-terminal extremities. We used a genome wide approach to identify and compare the mRNA targets of mammalian Staufen2 isoforms. The mRNA content of Staufen mRNPs was identified by probing DNA microarrays with probes derived from mRNAs isolated from immunopurified Staufen2-containing complexes following transfection of HEK293T cells with Stau2-HA (59kDa) or Stau2-HA (62kDa) expressors. Our results indicate that 11% of the cellular RNAs expressed in HEK293T cells are found in Stau2-containing mRNPs. There is a predominance of mRNAs involved in cell metabolism, transport, transcription, regulation of cell processes and catalytic activity.

Publication Title

A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes.

Alternate Accession IDs

E-GEOD-8437

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE77532
Genome-wide analysis of gene expression during adipogenesis in human adipose-derived mesenchymal stromal cells reveals novel patterns of gene expression during adipocyte differentiation
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

To better understand the scale of gene expression changes that occur during the formation of mature adipocytes from preadipocytes, we compared and characterised the transcriptome profile of mesenchymal stromal cells derived from human adipose tissue, otherwise known as adipose-derived stromal cells (ASCs), undergoing adipocyte differentiation on day 1, 7, 14 and 21 (representing the early to late stage process of adipogenesis). Microarray technique was systematically employed to study gene expression in adipose-derived stromal cells during adipogenic differentiation over a 21 day period to identify genes that are important in driving adipogenesis in humans.

Publication Title

Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation.

Alternate Accession IDs

E-GEOD-77532

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE15354
Cardiac left ventricles of 12 week-old male C57BL/6J and C57BL/6J-chrY<A/J/NaJ> mice
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

We have reported previously that when chromosome Y (chrY) from the mouse strain C57BL/6J (abbreviated as B) was substituted for that of A/J mice (ChrY<A>), cardiomyocytes from the resulting 'chromosome substitution' C57BL/6J-chrY<A> strain (abbreviated as B.Y) were smaller than that of their C57BL/6J counterparts. In reverse, when chrY<A> from A/J mice was substituted for that of chrY<B>, cardiomyocytes from the resulting A/J-chrY<C57> strain were larger than in their A/J counterparts. We further used these strains (B and the consomic B.Y) to test whether the origin of chrY could also be linked to differences in the profile of gene expression in their cardiac left ventricles in adult mice where either sham surgery (intact animals) or castration has been performed at 3-4 weeks of age..

Publication Title

Chromosome Y variants from different inbred mouse strains are linked to differences in the morphologic and molecular responses of cardiac cells to postpubertal testosterone.

Alternate Accession IDs

E-GEOD-15354

Sample Metadata Fields

Sex

View Samples
accession-icon GSE65859
Differentially regulated genes in adipocytes derived from Men1-null vs WT mouse embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

MEN1 is a tumor suppressor gene loss of which causes lipoma (fatty tumors under the skin) and many other endocrine and non-endocrine tumors. It's target genes in fat cells (adipocytes) are unknown. Gene expression in adipocytes that were in vitro differentiated from mouse embryonic stem cells (mESCs) of Men1-nul l(Men1-KO) and WT mice were compared to assess the expression of genes upon menin loss in adipocytes that could lead to the deveopment of lipoma.

Publication Title

Consequence of Menin Deficiency in Mouse Adipocytes Derived by In Vitro Differentiation.

Alternate Accession IDs

E-GEOD-65859

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE36947
Elevating Sox2 levels deleteriously affects the growth of glioblastoma and medulloblastoma cells.
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Induction of the transcription factor Sox2 from a doxycycline-inducible promoter in iSox2-DAOY medulloblastoma cells.

Publication Title

Elevating SOX2 levels deleteriously affects the growth of medulloblastoma and glioblastoma cells.

Alternate Accession IDs

E-GEOD-36947

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0