refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 406 results
Sort by

Filters

Organism

Technology

Platform

accession-icon SRP076218
RNAseq analysis of heart tissue from mice treated with atenolol and isoproterenol reveals a reciprocal transcriptional response
  • organism-icon Mus musculus
  • sample-icon 147 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The transcriptional response to many widely used drugs and its modulation by genetic variability is poorly understood. Here we present an analysis of RNAseq profiles from heart tissue of 18 inbred mouse strains treated with the ß-blocker atenolol (ATE) and the ß-agonist isoproterenol (ISO). Differential expression analyses revealed a large set of genes responding to ISO (n=1770 at FDR=0.0001) and a comparatively small one responding to ATE (n=23 at FDR=0.0001). At a less stringent definition of differential expression, the transcriptional responses to these two antagonistic drugs are reciprocal for many genes, with an overall anti-correlation of r= -0.3. This trend is also observed at the level of most individual strains even though the power to detect differential expression is significantly reduced. The inversely expressed gene sets are enriched with genes annotated for heart-related functions. Modular analysis revealed gene sets that exhibited coherent transcription profiles across some strains and/or treatments. Correlations between such modules and a broad spectrum of cardiovascular traits are stronger than expected by chance. This provides evidence for the overall importance of transcriptional regulation for these organismal responses and explicits links between co-expressed genes and the traits they are associated with. Gene set enrichment analysis of differentially expressed groups of genes pointed to pathways related to heart development and functionality. Our study provides new insights into the transcriptional response of the heart to perturbations of the ß-adrenergic system, implicating several new genes that had not been associated to this system previously. Overall design: Cardiac mRNA expression profiles of the various inbred mouse strains were examined either under baseline condition (control) or in response to chronic administration of isoproterenol or atenolol at 10 mg/kg per day for 2 weeks. Expression data were produced by RNA-sequencing, in triplicates, using the HiSeq 2000 Illumina platform. Only males, aged ten to twelve weeks on average, were included in the experimental protocol. Mouse ID numbers refer to those described in Berthonneche C. et al. PLoS One. 2009 Aug 12;4(8):e6610 (doi: 10.1371/journal.pone.0006610. PMID: 19672458). Corresponding individual phenotypic values, in particular heart rate, systolic blood pressure, electrocardiogaphic measurements and heart weight are available in dataset "maurer1" of the Mouse Phenome Database (http://phenome.jax.org/). Preparation of the sequencing libraries, RNA-sequencing and RNA expression quantitations were performed by the BGI.

Publication Title

RNAseq analysis of heart tissue from mice treated with atenolol and isoproterenol reveals a reciprocal transcriptional response.

Alternate Accession IDs

GSE82294

Sample Metadata Fields

Sex, Specimen part, Treatment, Subject

View Samples
accession-icon GSE14051
Expression signatures and cytogenetic aberrations in HPV16 E6, E7 and E6/E7-positive immortalized human epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Identification of genetic/cytogenetic alterations and differentially expressed cellular genes in HPV16 E6, E7 and E6/E7 positive human foreskin keratinocytes

Publication Title

Complementation of non-tumorigenicity of HPV18-positive cervical carcinoma cells involves differential mRNA expression of cellular genes including potential tumor suppressor genes on chromosome 11q13.

Alternate Accession IDs

E-GEOD-14051

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14052
Differentially expressed cellular genes in non-tumorigenic and tumorigenic HPV18 positive HeLa x fibroblast hybrid cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Identification of genes differentially expressed in tumorigenic compared to non-tumorigenic, HPV18 positive cells

Publication Title

Complementation of non-tumorigenicity of HPV18-positive cervical carcinoma cells involves differential mRNA expression of cellular genes including potential tumor suppressor genes on chromosome 11q13.

Alternate Accession IDs

E-GEOD-14052

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7441
Transcriptional profile of primary astrocytes expressing ALS-linked mutant SOD1.
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons. Mutations in the Cu/Zn superoxide dismutase (SOD1) are found in about 20% of patients with familial ALS. Mutant SOD1 causes motor neuron death through an acquired toxic property. Although, molecular mechanism underlying this toxic gain-of-function remains unknown, evidence support the role of mutant SOD1 expression in non-neuronal cells in shaping motor neuron degeneration. We have previously found that in contrast to non-transgenic, SOD1G93A-expressing astrocytes induced apoptosis of co-cultured motor neurons. This prompted us to investigate whether the effect on motor neuron survival was related to a change in the gene expression profile. Through high-density oligonucletide microarrays we found changes in the expression of genes involved in transcription, signaling, cell proliferation, extracellular matrix construction, response to stress and steroid and lipid metabolism. Decorin, a small multifunctional proteoglycan, was the most up-regulated gene. Down-regulated genes included the insulin-like growth factor-1 receptor and the RNA binding protein ROD1. We also analyzed the expression of selected genes in purified motor neurons expressing SOD1G93A and in spinal cord of asymptomatic and early symptomatic ALS-rodent model.

Publication Title

Transcriptional profile of primary astrocytes expressing ALS-linked mutant SOD1.

Alternate Accession IDs

E-GEOD-7441

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33774
Expression data from gingival tissue
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The experiment aims to identify transcriptional effects differences between periimplantitis, Parodontitis and healthy gingival tissue

Publication Title

Peri-implantitis versus periodontitis: functional differences indicated by transcriptome profiling.

Alternate Accession IDs

E-GEOD-33774

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP023259
Transcriptome Sequencing (RNA-seq) of Ara-C Resistant Murine AML Cell Lines Identifies Mechanisms of Resistance
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

An RNA-seq study of altered gene expression and mutations in Ara-C resistant acute myeloid leukemia murine cell lines. The analysis of the RNA-seq data led to the identification of a large deletion within the Dck coding sequence of the B117H cell line, which produced an alternatively processed form of Dck mRNA. The RNA-seq analysis also identified the presence of an insertion mutation in Dck in the B140H cell line. The RNA-seq analysis also identified a number of significant expression changes which did not appear in a previous microarray analysis (GSE18322), as well as identified other mutations which may be contributing to Ara-C resistance. Overall design: Two highly Ara-C resistant cell lines, B117H and B140H were derived from Ara-C sensitive parental cell lines, B117P and B140P. Variations in gene expression as well identification of acquired mutations between these Ara-C resistant/sensitive sets were studied using various RNA-seq analysis tools.

Publication Title

Using RNA-seq and targeted nucleases to identify mechanisms of drug resistance in acute myeloid leukemia.

Alternate Accession IDs

GSE47454

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE18088
Correlation of molecular profiles and clinical outcome of stage UICC II colon cancer patients
  • organism-icon Homo sapiens
  • sample-icon 51 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background Published multi-gene classifiers suggested outcome prediction for patients with stage UICC II colon cancer based on different gene expression signatures. However, there is currently no translation of these classifiers for application in routine diagnostic. Therefore, we aimed at validating own and published gene expression signatures employing methods which enable RNA and protein detection in routine diagnostic specimens. Results Immunohistochemistry was applied to 68 stage UICC II colon cancers to determine the protein expression of five selected previously published classifier genes (CDH17, LAT, CA2, EMR3, and TNFRSF11A). Correlation of protein expression data with clinical outcome within a 5-year post-surgery course failed to separate patients with a disease-free follow-up [Group DF] and relapse [Group R]). In addition, RNA from macrodissected tumor samples from 53 of these 68 patients was profiled on Affymetrix GeneChips (HG-U133 Plus 2.0). Prognostic signatures were generated by Nearest Shrunken Centroids with cross-validation. Although gene expression profiling allowed the identification of differentially expressed genes between the groups DF and R, a stable classification and prognosis signature was not discernable in our data. Furthermore, the application of previously published gene signatures consisting of 22 and 19 genes, respectively, to our gene expression data set using global tests and leave-one-out cross-validation was unable to predict clinical outcome (prediction rate 75.5% and 64.2%; n.s.). T-stage was the only independent prognostic factor for relapse in multivariate analysis with established clinical and pathological parameters including microsatellite status. Conclusions Our protein and gene expression analyses currently do not support application of molecular classifiers for prediction of clinical outcome in routine diagnostic as a basis for patient-orientated therapy in stage UICC II colon cancer. Further studies are needed to develop prognosis signatures applicable in patient care.

Publication Title

Molecular profiles and clinical outcome of stage UICC II colon cancer patients.

Alternate Accession IDs

E-GEOD-18088

Sample Metadata Fields

Sex

View Samples
accession-icon GSE18765
The transcriptome of prospectively isolated adult neural stem cells
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Since the discovery of adult neural stem cells, their exact identity is still under discussion. Moreover, the lack of a reproducible procedure to purify neural stem cells prospectively rather than by growing them in vitro has so far precluded their study at the transcriptome level. Here we demonstrate a novel procedure to prospectively isolate neural stem cells from the adult mouse subependymal zone on the basis of their GFAP- and prominin1-expression by fluorescence-activated cell sorting. All self-renewing, multipotent stem cells are contained in this fraction at 70% purity. The stem cell identity of these double-positive cells is further demonstrated in vivo, by using a novel split-Cre-technology for fate mapping.

Publication Title

In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells.

Alternate Accession IDs

E-GEOD-18765

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9770
Non-demented individuals with intermediate Alzheimer's neuropathologies - neuronal expression (6 regions)
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Layer II stellate neurons (entorhinal cortex) and layer III cortical neurons (hippocampus CA1, middle temporal gyrus, posterior cingulate, superior frontal gyrus, primary visual cortex) were gene expression profiled. Brain regions are from non-demented individuals with intermediate Alzheimer's disease neuropathologies

Publication Title

Multiscale Analysis of Independent Alzheimer's Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks by Human Herpesvirus.

Alternate Accession IDs

E-GEOD-9770

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE45291
Inhibition of Lymphotoxin-LIGHT Signaling Reduces the Interferon Signature in Rheumatoid Arthritis Patients
  • organism-icon Homo sapiens
  • sample-icon 519 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Whole blood expression was profiled in Rheumatoid Arthiritis and SLE (Systemic LUPUS Erythomatosus) patients.

Publication Title

Lymphotoxin-LIGHT pathway regulates the interferon signature in rheumatoid arthritis.

Alternate Accession IDs

E-GEOD-45291

Sample Metadata Fields

Specimen part, Disease, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0