refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 150 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE72062
Whole genome microarray gene expression profiling of hippocampal genes from aged rats subjected to chronic unpredictable mild stress
  • organism-icon Rattus norvegicus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Psychological, psychosocial and physical stress are major risk factors, which enhance the development of sporadic late-onset Alzheimer`s disease. The chronic unpredictable mild stress model mimics those risk factors and triggers signs of neurodegeneration and neuropathological features of sporadic AD such as tau hyperphosphorylation and enhanced amyloid beta generation. The study investigated the impact of chronic unpredictable mild stress on signs of neurodegeneration by analyzing hippocampal gene expression with whole genome microarray gene expression profiling.

Publication Title

Inhibition of ACE Retards Tau Hyperphosphorylation and Signs of Neuronal Degeneration in Aged Rats Subjected to Chronic Mild Stress.

Alternate Accession IDs

E-GEOD-72062

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE46871
Hippocampal gene expression profiling of a model of Alzheimer`s Disease upon treatment with the ACE inhibitor captopril
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Extracellular senile plaques of amyloid beta (Abeta) are a pathological hallmark in brain of patients with Alzheimer`s Disease (AD). Abeta is generated by the amyloidogenic processing of the amyloid precursor protein (APP). Concomitant to Abeta load, AD brain is characterized by an increase in protein level and activity of the angiotensin-converting enzyme (ACE). ACE inhibitors are a widely used class of drugs with established benefits for patients with cardiovascular disease. However, the role of ACE and ACE inhibition in the development of Abeta plaques and the process of AD-related neurodegeneration is not clear since ACE was reported to degrade Abeta. To investigate the effect of ACE inhibition on AD-related pathomechanisms, we used Tg2576 mice with neuron-specific expression of APPSwe as AD model. From 12 months of age, substantial Abeta plaque load accumulates in the hippocampus of Tg2576 mice as a brain region, which is highly vulnerable to AD-related neurodegeneration. The effect of central ACE inhibition was studied by treatment of 12 month-old Tg2576 mice for six months with the brain penetrating ACE inhibitor captopril. At an age of 18 months, hippocampal gene expression profiling was performed of captopril-treated Tg2576 mice relative to untreated 18 month-old Tg2576 controls with high Abeta plaque load. As an additional control, we used 12 month-old Tg2576 mice with low Abeta plaque load. Whole genome microarray gene expression profiling revealed gene expression changes induced by the brain-penetrating ACE inhibitor captopril, which could reflect the neuro-regenerative potential of central ACE inhibition.

Publication Title

ACE inhibition with captopril retards the development of signs of neurodegeneration in an animal model of Alzheimer's disease.

Alternate Accession IDs

E-GEOD-46871

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE25765
Microarray gene expression profiling of cardiac genes at the onset of heart failure
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Atherosclerosis and pressure overload are major risk factors for the development of heart failure in patients. Cardiac hypertrophy often precedes the development of heart failure. However, underlying mechanisms are incompletely understood. To investigate pathomechanisms underlying the transition from cardiac hypertrophy to heart failure we used experimental models of atherosclerosis- and pressure overload-induced cardiac hypertrophy and failure, i.e. apolipoprotein E (apoE)-deficient mice, which develop heart failure at an age of 18 months, and non-transgenic C57BL/6J (B6) mice with heart failure triggered by 6 months of pressure overload induced by abdominal aortic constriction (AAC). The development of heart failure was monitored by echocardiography, invasive hemodynamics and histology. The microarray gene expression study of cardiac genes was performed with heart tissue from failing hearts relative to hypertrophic and healthy heart tissue, respectively. The microarray study revealed that the onset of heart failure was accompanied by a strong up-regulation of cardiac lipid metabolism genes involved in fat synthesis, storage and oxidation.

Publication Title

Up-regulation of the cardiac lipid metabolism at the onset of heart failure.

Alternate Accession IDs

E-GEOD-25765

Sample Metadata Fields

Age, Specimen part, Disease

View Samples
accession-icon GSE25767
Cardiac gene expression profiling of apoE-deficient mice receiving heart failure treatment with the anti-ischemic drug ranolazine
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Heart failure is a leading cause of cardiovascular mortality with limited options for treatment. We used 18 month-old apolipoprotein E (apoE)- deficient mice as a model of atherosclerosis-induced heart failure to analyze whether the anti-ischemic drug ranolazine could retard the progression of heart failure. The study showed that 2 months of ranolazine treatment improved cardiac function of 18 month-old apoE-deficient mice with symptoms of heart failure as assessed by echocardiography. To identify changes in cardiac gene expression induced by treatment with ranolazine a microarray study was performed with heart tissue from failing hearts relative to ranolazine-treated and healthy control hearts. The microarray approach identified heart failure-specific genes that were normalized during treatment with the anti-ischemic drug ranolazine.

Publication Title

Up-regulation of the cardiac lipid metabolism at the onset of heart failure.

Alternate Accession IDs

E-GEOD-25767

Sample Metadata Fields

Age, Specimen part, Disease, Treatment

View Samples
accession-icon GSE15553
Enhanced differentiation of hESCs into multipotential mesodermal stem cells by inhibition of TGF-b signaling by using SB
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Directing differentiation of human embryonic stem cells (hESC) into specific cell types using an easy and reproducible protocol is a perquisite for the clinical use of hESC in regenerative medicine protocols. Here, we report the generation of mesodermal cells with differentiation potential to myocytes, osteoblasts, chondrocytes and adipocytes. We demonstrate that during hESC differentiation as embryoid bodies (EB), inhibition of TGF-b/Activin/Nodal signaling using SB-431542 (SB) markedly up-regulated paraxial mesodermal markers (TBX6, TBX5), early myogenic transcriptional factors (Myf5, Pax7) as well as myocyte committed markers (NCAM, CD34, Desmin, MHC (fast), alpha-smooth muscle actin, Nkx2.5, cTNT). Establishing EB outgrowth cultures (SB-OG) in the presence of SB (1 uM) led to further enrichment of cells expressing markers for myocyte progenitor cell: CD34+ (33%), NCAM+ (CD56) (73%), PAX7 (25%) and mature myocyte proteins (MYOD1, tropomyocin, fast MHC an

Publication Title

Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-beta/activin/nodal signaling using SB-431542.

Alternate Accession IDs

E-GEOD-15553

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP049738
Deep Sequencing-Based Transcriptome Analysis of Chicken Spleen in Response to J Subgroup Avian Leukosis Virus (ALV-J) Infection.
  • organism-icon Gallus gallus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Purpose: The goals of this study are to investigate the differentially expressed genes between ALV-J infected (WRR+) and uninfected (WRR-)chickens spleens by Illumina deep sequencing. Methods: 140-day-old female chickens of White Recessive Rock (WRR) were confirmed as J subgroup avian leukosis virus (ALV-J) infection. Total RNA from three ALV-J-infected spleens (designated: WRR1+, WRR2+, WRR3+) and three uninfected normal spleen samples (designated: WRR1-, WRR2-, WRR3-) was isolated by TRIzol following the manufacturer's instruction (Invitrogen, CA, USA). RNA samples of three individuals within each group were pooled with equal amounts, and then were subjected to Illumina deep sequencing by Illumina Genome Analyzer IIx. Results: Through raw data processed, 49,979,648 and 43,704,401 clean reads with an average length of 101 bp, which represented total residues of 4,859,084,087 and 4,238,826,168 bp, were obtained for WRR- and WRR+ libraries, respectively. Subsequently, the clean reads in the two libraries were assembled. Altogether, 121,493 contigs were assembled with an average length of 927 bp (ranged from 300 bp to 23,402 bp), leading to generation of 82,829 unigenes. The length of unigenes varied from 351 bp to 28,928 bp, with an average length of 1,155 bp. Based on the FPKM value of each gene, 252 DEGs were identified by DEGseq package using Benjamini-q-value of 0.05 as a cut-off. In ALV-J infected spleens, 90 genes showed up-regulated and 162 showed down-regulated expression when compared to uninfected samples. Conclusions: Our study represents the first time to elucidate the ALV-J infected chickens'spleens at the transcription level by RNA-seq technology. A total of 252 genes were found to be differentially expressed in ALV-J infected spleens when compared to uninfected chickens. These genes can be considered as candidates for further study ALV-J invasion. Overall design: Spleen mRNA profiles of 140-day-old ALV-J infected (WRR+) and uninfected (WRR-) female chickens of White Recessive Rock were generated by deep sequencing, using Illumina Genome Analyzer IIx.

Publication Title

MiR-34b-5p Suppresses Melanoma Differentiation-Associated Gene 5 (<i>MDA5</i>) Signaling Pathway to Promote Avian Leukosis Virus Subgroup J (ALV-J)-Infected Cells Proliferaction and ALV-J Replication.

Alternate Accession IDs

GSE63226

Sample Metadata Fields

Subject

View Samples
accession-icon GSE12643
Transcription profiling of myotubes from patients with type 2 diabetes
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Microarray-based studies of skeletal muscle from patients with type 2 diabetes and high-risk individuals have demonstrated that insulin resistance and reduced mitochondrial biogenesis co-exist early in the pathogenesis of type 2 diabetes independent of hyperglycaemia and obesity. It is unknown whether reduced mitochondrial biogenesis or other transcriptional alterations co-exist with impaired insulin-responsiveness in primary human muscle cells from patients with type 2 diabetes.

Publication Title

Transcriptional profiling of myotubes from patients with type 2 diabetes: no evidence for a primary defect in oxidative phosphorylation genes.

Alternate Accession IDs

E-GEOD-12643

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22113
DLK1 Is a Novel Regulator of Bone Mass That Mediates Estrogen-Deficiency Induced Bone Loss in Mice
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

DLK1/FA-1 (delta-like 1/fetal antigen-1) is a transmembrane protein belonging to Notch/Delta family that acts as a membrane-associated or a soluble protein to regulate regeneration of a number of adult tissues. Here, we examined the role of DLK1/FA-1 in bone biology using osteoblast-specific-Dlk1 over-expressing mice (Col1-Dlk1). Col1-Dlk1 mice displayed growth retardation and significantly reduced total body weight and bone mineral density (BMD). CT-scanning revealed a reduced trabecular and cortical bone volume fraction. Tissue-level histomorphometric analysis demonstrated decreased bone formation rate and enhanced bone resorption in Col1-Dlk1 as compared to WT. At a cellular level, DLK1 markedly reduced the total number of bone marrow (BM)-derived CFU-F, as well as their osteogenic capacity. In a number of in vitro culture systems, DLK1 stimulated osteoclastogenesis indirectly through osteoblast-dependent increased production of pro-inflammatory bone resorbing cytokines (e.g, Il7, Tnfa and Ccl3). We found that ovariectomy (ovx)-induced bone loss was associated with increased production of DLK1 in bone marrow by activated T-cells. However, Dlk1-/- mice were protected from ovx-induced bone loss. Thus, we identified DLK1 as a novel regulator of bone mass that function to inhibit bone formation and to stimulate bone resorption. Increasing DLK1 production by T-cells under estrogen deficiency suggests its possible use as a therapeutic target for preventing postmenopausal bone loss.

Publication Title

DLK1 is a novel regulator of bone mass that mediates estrogen deficiency-induced bone loss in mice.

Alternate Accession IDs

E-GEOD-22113

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE60038
Genome-wide analysis of high glucose and DZNep (EZH2 inhibitor) induced gene expression by mouse podocytes
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of DZNep-induced gene expression changes in cultured podocytes. The hypothesis tested in the present study was that DZnep ultimately augments Txnip expression, increasing oxidative stress in podocytes. These results provide important information on the response of podocytes to histone methyltransferase inhibition and a possible mechanism for DZNep action in podocytes.

Publication Title

The Histone Methyltransferase Enzyme Enhancer of Zeste Homolog 2 Protects against Podocyte Oxidative Stress and Renal Injury in Diabetes.

Alternate Accession IDs

E-GEOD-60038

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE108607
SUMOylation Regulates Transcription by the Progesterone Receptor A Isoform in a Target Gene Selective Manner
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Luminal breast cancers express estrogen (ER) and progesterone (PR) receptors, and respond to endocrine therapies. However, some ER+PR+ tumors display intrinsic or acquired resistance, possibly related to PR. Two PR isoforms, PR-A and PR-B, regulate distinct gene subsets that may differentially influence tumor fate. A high PR-A:PR-B ratio is associated with poor prognosis and tamoxifen resistance. We speculate that excessive PR-A marks tumors that will relapse early. Here we address mechanisms by which PR-A regulate transcription, focusing on SUMOylation. We use receptor mutants and synthetic promoter/reporters to show that SUMOylation deficiency or the deSUMOylase SENP1 enhance transcription by PR-A, independent of the receptors dimerization interface or DNA binding domain. De-SUMOylation exposes the agonist properties of the antiprogestin RU486. Thus, on synthetic promoters, SUMOylation functions as an independent brake on transcription by PR-A. What about PR-A SUMOylation of endogenous human breast cancer genes? To study these, we used gene expression profiling. Surprisingly, PR-A SUMOylation influences progestin target genes differentially, with some upregulated, others downregulated, and others unaffected. Hormone-independent gene regulation is also PR-A SUMOylation dependent. Several SUMOylated genes were analyzed in clinical breast cancer database. In sum, we show that SUMOylation does not simply repress PR-A. Rather, it regulates PR-A activity in a target selective manner including genes associated with poor prognosis, shortened survival, and metastasis.

Publication Title

SUMOylation Regulates Transcription by the Progesterone Receptor A Isoform in a Target Gene Selective Manner.

Alternate Accession IDs

E-GEOD-108607

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0