github link
Accession IconSRP191510

Treanscriptomes of emering nodules, mature nodules, emerging lateral roots, and young lateral roots in soybean

Organism Icon Glycine max
Sample Icon No Downloadable Samples
Technology Badge IconIllumina HiSeq 2000

Submitter Supplied Information

Description
Symbiotic legume nodules and lateral roots arise away from the root meristem via dedifferentiation events. While these organs share some morphological and developmental similarities, whether legume nodules are modified lateral roots is an open question. We dissected emerging nodules (EN), mature nodules (MN), emerging lateral roots (ELR) and young lateral roots (YLR), and constructed strand-specific RNAseq libraries using polyA-enriched RNA preparations. Root sections above and below these organs devoid of any lateral organs were used to construct respective control tissue libraries (ABEN, ABMN, ABELR, ABYLR respectively). High sequence quality, predominant mapping to coding sequences, and consistency between replicates indicated that the RNAseq libraries were of very high quality. We identified genes enriched in emerging nodules, mature nodules, emerging lateral roots and young lateral roots in soybean by comparing global gene expression profiles between each of these organs and adjacent root segments. Potential uses for this high quality transcriptome data set include generation of global gene regulatory networks to identify key regulators; metabolic pathway analyses and comparative analysis of key gene families to discover organ-specific biological processes; and identification of organ-specific alternate spliced transcripts. When combined with other similar datasets especially from leguminous plants these analyses can help answer questions on the evolutionary origins of root nodules and relationships between the development of different plant lateral organs. Overall design: Three replicate samples were harvested for each of the eight tissue types for the preparation of twenty four RNAseq libraries.
PubMed ID
No associated PubMed ID
Publication Title
No associated publication
Total Samples
24
Submitter’s Institution
No associated institution
Authors
No associated authors
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Subject
Processing Information
Additional Metadata
No rows found
Loading...