github link
Accession IconSRP186590

Paternally-acting canonical RNA-directed DNA methylation pathway genes sensitizes Arabidopsis endosperm to paternal dosage [RNA-Seq]

Organism Icon Arabidopsis thaliana
Sample Icon 10 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500

Submitter Supplied Information

Seed development is sensitive to parental dosage, with excess maternal or paternal genomes creating reciprocal phenotypes. Paternal genomic excess results in extensive endosperm proliferation without cellularization and eventual seed abortion. We previously showed that loss of the RNA POL IV gene nrpd1 in tetraploid fathers represses seed abortion in paternal excess crosses. Here we show genetically that RNA-directed DNA methylation (RdDM) pathway activity in the paternal parent is sufficient to determine the viability of paternal excess seeds. The status of the RdDM pathway in paternal excess endosperm does not impact seed viability. Comparison of endosperm transcriptomes, DNA methylation, and small RNAs from balanced and paternal excess endosperm demonstrates that paternal excess seed abortion is unlikely to be dependent on either transposable element or imprinted gene mis-regulation. We suggest instead that loss of paternal RdDM modulates expression at a small subset of genes and desensitizes endosperm to paternal excess. Finally, using allele-specific transcription data, we present evidence of a transcriptional buffering system that up37 regulates maternal alleles and represses paternal alleles in response to excess paternal genomic dosage. These findings prompt reconsideration of models for dosage sensitivity in endosperm. Overall design: Examination of parent-of-origin specific and total gene expression in wild type and nrpd1 endosperm 6 days after pollination - 10 samples. Balanced (Replicate1) GSM2858422 Balanced (Replicate2) GSM2858423 Balanced (Replicate3) GSM2858424 Balanced (Replicate4) GSM2482916 Balanced (Replicate5) GSM2482917
PubMed ID
Total Samples
Submitter’s Institution
No associated institution
Alternate Accession IDs


Show of 0 Total Samples
Accession Code
Processing Information
Additional Metadata
No rows found