github link
Accession IconSRP166768

Spatial chromosome folding and active transcription drive DNA fragility and formation of oncogenic MLL translocations [RNA-Seq]

Organism Icon Homo sapiens
Sample Icon 2 Downloadable Samples
Technology Badge IconIllumina HiSeq 4000

Submitter Supplied Information

How spatial chromosome organization influences genome integrity is still poorly understood. Here we show that DNA double-strand breaks (DSBs) mediated by topoisomerase 2 (TOP2) activities, are enriched at chromatin loop anchors with high transcriptional activity. Recurrent DSBs occur at CTCF/cohesin bound sites at the bases of chromatin loops and their frequency positively correlates with transcriptional output and directionality. The physiological relevance of this preferential positioning is indicated by the finding that genes recurrently translocating to drive leukemias, are highly transcribed and are enriched at loop anchors. These genes accumulate DSBs at recurrent hot spots that give rise to chromosomal fusions relying on the activity of both TOP2 isoforms and on transcriptional elongation. We propose that transcription and 3D chromosome folding jointly pose a threat to genomic stability, and are key contributors to the occurrence of genome rearrangements that drive cancer. Overall design: Nuclear RNA profiling in lymphoblastoid TK6 cell line
PubMed ID
Total Samples
Submitter’s Institution
No associated institution
Alternate Accession IDs


Show of 0 Total Samples
Accession Code
Specimen part
Cell line
Processing Information
Additional Metadata
No rows found