github link
Accession IconSRP162673

Caveolin-1 modulates mechanotransduction responses to substrate stiffness through actin-dependent control of YAP

Organism Icon Mus musculus
Sample Icon 8 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500

Submitter Supplied Information

Description
The transcriptional regulator YAP orchestrates important cell functions, determining tissue homeostasis, organ growth control, and tumorigenesis. Mechanical stimuli are a key input to YAP activity, but the mechanisms controlling this regulation remain largely uncharacterized. We show that CAV1 positively modulates the YAP mechanoresponse to substrate stiffness through actin cytoskeleton-dependent and Hippo kinase-independent mechanisms. RHO activity is necessary but not sufficient for CAV1-dependent mechanoregulation of YAP activity. Systematic quantitative interactomic studies and image-based siRNA screenings provide evidence that this actin-dependent regulation is determined by YAP interaction with the 14-3-3 protein YWHAH. Constitutive YAP activation rescued phenotypes associated with CAV1 loss, including defective ECM remodeling. CAV1-mediated control of YAP activity was validated in vivo in a model of pancreatitis-driven acinar-to-ductal metaplasia. We propose that this CAV1-YAP mechanotransduction system controls a significant share of cell programs linked to these two pivotal regulators, with potentially broad physiological and pathological implications. Overall design: RNA-Seq in WT and Cav1KO mouse embryonic fibroblasts (MEFs) cultured on stiff or soft polyacrylamide hydrogels
PubMed ID
Total Samples
8
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Treatment
Subject
Processing Information
Additional Metadata
No rows found
Loading...