github link
Accession IconSRP157750

RNA-Seq of osteosarcoma cell lines

Organism Icon Homo sapiens
Sample Icon 39 Downloadable Samples
Technology Badge IconNextSeq 500

Submitter Supplied Information

Description
The Alternative Lengthening of Telomeres (ALT) pathway stimulates telomere elongation and prevents cellular senescence in approximately 60% of osteosarcoma. While the precise mechanisms underlying the ALT pathway are unclear, mutations in the chromatin remodeling protein ATRX, histone chaperone DAXX, and the histone variant H3.3, correlate with ALT status. ATRX and DAXX facilitate deposition of the histone variant H3.3 within heterochromatic regions including the telomere suggesting that loss of ATRX, DAXX, and/or H3.3 lead to defects in heterochromatin maintenance at telomeres, ultimately contributing to ALT activity. Previous studies have detected genetic mutations in ATRX, DAXX, and H3.3 in ALT cell lines and tumor samples. However, a subset of ALT samples show loss of ATRX or DAXX protein expression or localization without evidence of genetic alterations, indicating a role for other defects in ATRX/DAXX/H3.3 function. Here, using Next Generation Sequencing, we identified a novel gene fusion event between DAXX and the kinesin motor protein, KIFC3, which leads to the translation of a chimeric DAXX-KIFC3 fusion protein. Here, we demonstrate that the fusion of KIFC3 to DAXX leads to defects in DAXX function and likely perpetuates ALT activity. These data highlight a previously unrecognized mechanism of DAXX inactivation in ALT positive osteosarcoma and provide rationale for thorough and comprehensive analyses of ATRX/DAXX/H3.3 proteins in ALT positive cancers. Overall design: 13 cell lines sequenced in triplicate, totaling 39 sequencing samples
PubMed ID
Total Samples
39
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Cell line
Subject
Processing Information
Additional Metadata
No rows found
Loading...