github link
Accession IconSRP152951

RNAseq of (Dimethylfumarate)DMF-induced changes in human CD8+ memory cells

Organism Icon Homo sapiens
Sample Icon 8 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500

Submitter Supplied Information

Description
IL-17-producing CD8+ (Tc17)T cells are implicated in the pathogenesis of multiple sclerosis (MS), thereby representing a promising target for therapy. We found that dimethyl fumarate (DMF), a first-line medication for MS upregulated reactive oxygen species (ROS) by glutathione depletion in murine Tc17 cells, which limited IL-17 and diverted Tc17 cells towards cytotoxic T lymphocyte (CTL) signature. DMF enhanced PI3K-AKT-FOXO1-T-bet- as well as STAT5-signaling leading to restricted permissive histone state at the Il17 locus. T-bet-deficiency, inhibiting PI3K-AKT, STAT5 or histone deacetylases prevented DMF-ROS-mediated IL-17 suppression. In MS patients with stable response, DMF suppressed IL-17 production by CD8+ T-cells and triggered diversion from Tc17 towards CTL signature along with enriched ROS-, PI3K-AKT-FOXO1-signaling, demonstrating comparable regulation across species. Accordingly, in the mouse model for MS, DMF limited Tc17-encephalitogenicity. Our findings disclose DMF-ROS-AKT-driven pathway, which selectively modulates Tc17 fate to ameliorate MS, thus opening avenue to develop markers and targets for specific therapy. Overall design: CD8+ memory cells from human blood
PubMed ID
Total Samples
8
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Subject
Processing Information
Additional Metadata
No rows found
Loading...