github link
Accession IconSRP150428

Utp14 interaction with the Small Subunit Processome.

Organism Icon Saccharomyces cerevisiae
Sample Icon No Downloadable Samples
Technology Badge IconIllumina MiSeq

Submitter Supplied Information

Description
The SSU Processome (sometimes referred to as 90S) is an early stable intermediate in the small ribosomal subunit biogenesis pathway of eukaryotes. Progression of the SSU Processome to a pre-40S particle requires a large-scale compaction of the RNA and release of many biogenesis factors. The U3 snoRNA is a primary component of the SSU Processome and hybridizes to the rRNA at multiple locations to organize the structure of the SSU Processome. Thus, release of U3 is prerequisite for the transition to pre-40S. Our lab proposed that the RNA helicase Dhr1 plays a crucial role in the transition by unwinding U3 and that this activity is controlled by the SSU Processome protein Utp14. How Utp14 times the activation of Dhr1 is an open question. Despite being highly conserved, Utp14 contains no recognizable domains, and how Utp14 interacts with the SSU Processome is not well characterized. Here, we used UV crosslinking and analysis of cDNA (CRAC) and yeast two-hybrid interaction to characterize how Utp14 interacts with the pre-ribosome. Moreover, proteomic analysis of SSU particles lacking Utp14 revealed that the presence of Utp14 is needed for efficient recruitment of the RNA exosome. Our analysis positions Utp14 to be uniquely poised to communicate the status of assembly of the SSU Processome to Dhr1 and possibly to the exosome as well. Overall design: Data is available for two biological replicates for both Utp14-HTP (AJY4051) and an untagged control (BY4741).
PubMed ID
Total Samples
6
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Cell line
Subject
Processing Information
Additional Metadata
No rows found
Loading...