github link
Accession IconSRP149193

A subset of skin macrophages modulates surveillance and regeneration of local nerves

Organism Icon Mus musculus
Sample Icon 16 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500, Illumina HiSeq 3000

Submitter Supplied Information

Description
Host-environment interfaces such as the dermis comprise tissue macrophages as the most abundant resident immune cell type. Diverse tasks, i.e. to resist against invading pathogens, to attract bypassing immune cells from penetrating vessels and to aid tissue development and repair require a dynamic postnatal coordination of tissue macrophages specification. Here, we delineated the postnatal development of dermal macrophages and their differentiation into distinct subsets by adapting single cell transcriptomics, fate-mapping and tissue imaging. We thereby identified a small phenotypically and transcriptionally distinct subset of embryo-derived skin macrophages that was maintained and largely excluded from the overall postnatal exchange by monocytes. These macrophages specifically interacted with dermal sensory nerves, surveilled and trimmed the myelin sheets and regulated axon sprouting after mechanical injury. In summary, our data show long-lasting functional specification of macrophages in the dermis that is driven by step-wise adaptation to guiding structures and ensures codevelopment of ontogenetically distinct cells within the same compartment. Overall design: Single Cell Sequencing was performed on CD45+CD11b+CD64+Lin-(lineage B220, CD3, NK1.1, Siglec-F, Ly6G) CX3CR1 (low, mid, high) macrophage subsets from mouse dermis after enzymatic digestion
PubMed ID
Total Samples
16
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Age
Specimen part
Cell line
Subject
Processing Information
Additional Metadata
No rows found
Loading...