github link
Accession IconSRP147921

Insights into the Biology of Hearing and Deafness Revealed by Single-Cell RNA Sequencing

Organism Icon Mus musculus
Sample Icon 127 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500, Illumina HiSeq 4000, MinION

Submitter Supplied Information

Description
The goal of this study was to isolate individual cochlear hair cells and supporting cells from wild type animals in order to characterize the transcriptome of functionally mature auditory hair cells in the mammalian cochlea. Overall design: Single-cell RNA sequencing is a powerful tool by which to characterize the transcriptional profile of low-abundance cell types, however its application to the inner ear has been hampered by the bony labyrinth, tissue sparsity and difficulties in dissociating the ultra-rare cells of the membranous cochlea.  Herein, we present a method to isolate individual inner hair cells (IHCs), outer hair cells (OHCs) and Deiters' cells (DCs) from the murine cochlea at any post-natal time point. We isolated of 132 single cells from OHC, IHC, and DC cell types at postnatal day 15 (p15) and performed RNA-Sequencing of these cells using smartseq2 and Illumina HiSeq. An additional 12 single OHCs from the same timepoint were isolated and sequenced using smartseq2 and the Nanopore MinION 1D reads. We leverage single-cell RNA sequencing to analyze these three cell types and generate a multidimensional overview of their transcriptomes. The data provide new insights into OHC motility and the architecture of gene products implicated in hereditary hearing loss. This refined view of transcription in the organ of Corti will enhance to our understanding of the biology of hearing and deafness.
PubMed ID
Total Samples
144
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Subject
Processing Information
Additional Metadata
No rows found
Loading...