github link
Accession IconSRP144685

Proteotoxicity from aberrant ribosome biogenesis compromises cell fitness

Organism Icon Saccharomyces cerevisiae
Sample Icon No Downloadable Samples
Technology Badge IconNextSeq 500

Submitter Supplied Information

Description
To achieve maximal growth, cells must manage a massive economy of ribosomal proteins (r-proteins) and RNAs (rRNAs) to produce thousands of ribosomes every minute. Although ribosomes are essential in all cells, natural disruptions to ribosome biogenesis lead to heterogeneous phenotypes. Here, we model these perturbations in Saccharomyces cerevisiae and show that challenges to ribosome biogenesis result in acute loss of proteostasis. Imbalances in the synthesis of r-proteins and rRNAs lead to the rapid aggregation of newly synthesized orphan r-proteins and compromise essential cellular processes, which cells alleviate by activating proteostasis genes. Exogenously bolstering the proteostasis network increases cellular fitness in the face of challenges to ribosome assembly, demonstrating the direct contribution of orphan r-proteins to cellular phenotypes. We propose that ribosome assembly is a key vulnerability of proteostasis maintenance in proliferating cells that may be compromised by diverse genetic, environmental, and xenobiotic perturbations that generate orphan r-proteins. Overall design: RNA-seq from yeast cells treated in the indicated condition
PubMed ID
Total Samples
114
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Cell line
Subject
Processing Information
Additional Metadata
No rows found
Loading...